Extremal graphs without three-cycles or four-cycles

We derive bounds for f(v), the maximum number of edges in a graph on v vertices that contains neither three‐cycles nor four‐cycles. Also, we give the exact value of f(v) for all v up to 24 and constructive lower bounds for all v up to 200. © 1993 John Wiley & Sons, Inc.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 1993-11, Vol.17 (5), p.633-645
Hauptverfasser: Garnick, David K., Kwong, Y. H. Harris, Lazebnik, Felix
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 645
container_issue 5
container_start_page 633
container_title Journal of graph theory
container_volume 17
creator Garnick, David K.
Kwong, Y. H. Harris
Lazebnik, Felix
description We derive bounds for f(v), the maximum number of edges in a graph on v vertices that contains neither three‐cycles nor four‐cycles. Also, we give the exact value of f(v) for all v up to 24 and constructive lower bounds for all v up to 200. © 1993 John Wiley & Sons, Inc.
doi_str_mv 10.1002/jgt.3190170511
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jgt_3190170511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_R8RBX1LR_D</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3371-1d04fda7170af24db2de2eedb4ca878f52e513be2208fc0db8f9170cd5c187f13</originalsourceid><addsrcrecordid>eNqFj0FPAjEQhRujiYhePe_Ba3Gm3aXdoyKghmhCMHprut0WFheXtEuAf--aJRhPniYzed-b9wi5RughALtdzusexxRQQIJ4QjoIqaCAKE9JB3g_pimw-JxchLCE5pyA7BA-3NXernQZzb1eL0K0LepFtamjeuGtpWZvShuiykeu2vjDeknOnC6DvTrMLnkbDWeDRzp5HT8N7ibUcC6QYg6xy7Vo8mjH4jxjuWXW5llstBTSJcwmyDPLGEhnIM-kSxutyRODUjjkXdJrfY2vQvDWqbUvVtrvFYL6qayayuq3cgPctMBaB6NL5_WXKcKRihG4EP1GlraybVHa_T-m6nk8-_OCtmwRars7stp_qr7gIlHvL2M1ldP7D5xM1QP_BqVTdqE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Extremal graphs without three-cycles or four-cycles</title><source>Access via Wiley Online Library</source><creator>Garnick, David K. ; Kwong, Y. H. Harris ; Lazebnik, Felix</creator><creatorcontrib>Garnick, David K. ; Kwong, Y. H. Harris ; Lazebnik, Felix</creatorcontrib><description>We derive bounds for f(v), the maximum number of edges in a graph on v vertices that contains neither three‐cycles nor four‐cycles. Also, we give the exact value of f(v) for all v up to 24 and constructive lower bounds for all v up to 200. © 1993 John Wiley &amp; Sons, Inc.</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.3190170511</identifier><identifier>CODEN: JGTHDO</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Combinatorics ; Combinatorics. Ordered structures ; Exact sciences and technology ; Graph theory ; Mathematics ; Sciences and techniques of general use</subject><ispartof>Journal of graph theory, 1993-11, Vol.17 (5), p.633-645</ispartof><rights>Copyright © 1993 Wiley Periodicals, Inc., A Wiley Company</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3371-1d04fda7170af24db2de2eedb4ca878f52e513be2208fc0db8f9170cd5c187f13</citedby><cites>FETCH-LOGICAL-c3371-1d04fda7170af24db2de2eedb4ca878f52e513be2208fc0db8f9170cd5c187f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.3190170511$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.3190170511$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4103776$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Garnick, David K.</creatorcontrib><creatorcontrib>Kwong, Y. H. Harris</creatorcontrib><creatorcontrib>Lazebnik, Felix</creatorcontrib><title>Extremal graphs without three-cycles or four-cycles</title><title>Journal of graph theory</title><addtitle>J. Graph Theory</addtitle><description>We derive bounds for f(v), the maximum number of edges in a graph on v vertices that contains neither three‐cycles nor four‐cycles. Also, we give the exact value of f(v) for all v up to 24 and constructive lower bounds for all v up to 200. © 1993 John Wiley &amp; Sons, Inc.</description><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqFj0FPAjEQhRujiYhePe_Ba3Gm3aXdoyKghmhCMHprut0WFheXtEuAf--aJRhPniYzed-b9wi5RughALtdzusexxRQQIJ4QjoIqaCAKE9JB3g_pimw-JxchLCE5pyA7BA-3NXernQZzb1eL0K0LepFtamjeuGtpWZvShuiykeu2vjDeknOnC6DvTrMLnkbDWeDRzp5HT8N7ibUcC6QYg6xy7Vo8mjH4jxjuWXW5llstBTSJcwmyDPLGEhnIM-kSxutyRODUjjkXdJrfY2vQvDWqbUvVtrvFYL6qayayuq3cgPctMBaB6NL5_WXKcKRihG4EP1GlraybVHa_T-m6nk8-_OCtmwRars7stp_qr7gIlHvL2M1ldP7D5xM1QP_BqVTdqE</recordid><startdate>199311</startdate><enddate>199311</enddate><creator>Garnick, David K.</creator><creator>Kwong, Y. H. Harris</creator><creator>Lazebnik, Felix</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199311</creationdate><title>Extremal graphs without three-cycles or four-cycles</title><author>Garnick, David K. ; Kwong, Y. H. Harris ; Lazebnik, Felix</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3371-1d04fda7170af24db2de2eedb4ca878f52e513be2208fc0db8f9170cd5c187f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garnick, David K.</creatorcontrib><creatorcontrib>Kwong, Y. H. Harris</creatorcontrib><creatorcontrib>Lazebnik, Felix</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garnick, David K.</au><au>Kwong, Y. H. Harris</au><au>Lazebnik, Felix</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extremal graphs without three-cycles or four-cycles</atitle><jtitle>Journal of graph theory</jtitle><addtitle>J. Graph Theory</addtitle><date>1993-11</date><risdate>1993</risdate><volume>17</volume><issue>5</issue><spage>633</spage><epage>645</epage><pages>633-645</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><coden>JGTHDO</coden><abstract>We derive bounds for f(v), the maximum number of edges in a graph on v vertices that contains neither three‐cycles nor four‐cycles. Also, we give the exact value of f(v) for all v up to 24 and constructive lower bounds for all v up to 200. © 1993 John Wiley &amp; Sons, Inc.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/jgt.3190170511</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0364-9024
ispartof Journal of graph theory, 1993-11, Vol.17 (5), p.633-645
issn 0364-9024
1097-0118
language eng
recordid cdi_crossref_primary_10_1002_jgt_3190170511
source Access via Wiley Online Library
subjects Combinatorics
Combinatorics. Ordered structures
Exact sciences and technology
Graph theory
Mathematics
Sciences and techniques of general use
title Extremal graphs without three-cycles or four-cycles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T18%3A39%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extremal%20graphs%20without%20three-cycles%20or%20four-cycles&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Garnick,%20David%20K.&rft.date=1993-11&rft.volume=17&rft.issue=5&rft.spage=633&rft.epage=645&rft.pages=633-645&rft.issn=0364-9024&rft.eissn=1097-0118&rft.coden=JGTHDO&rft_id=info:doi/10.1002/jgt.3190170511&rft_dat=%3Cistex_cross%3Eark_67375_WNG_R8RBX1LR_D%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true