The distance spectrum of a tree
Let T be a tree with line graph T*. Define K = 2I + A(T*), where A denotes the adjacency matrix. Then the eigenvalues of ‐2K−1 interlace the eigenvalues of the distance matrix D. This permits numerous results about the spectrum of K to be transcribed for the less tractable D.
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 1990-07, Vol.14 (3), p.365-369 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 369 |
---|---|
container_issue | 3 |
container_start_page | 365 |
container_title | Journal of graph theory |
container_volume | 14 |
creator | Merris, Russell |
description | Let T be a tree with line graph T*. Define K = 2I + A(T*), where A denotes the adjacency matrix. Then the eigenvalues of ‐2K−1 interlace the eigenvalues of the distance matrix D. This permits numerous results about the spectrum of K to be transcribed for the less tractable D. |
doi_str_mv | 10.1002/jgt.3190140309 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jgt_3190140309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_HGTH5PML_X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3569-65eb86b9d442affbd4a5802411e2abe027ca683820c4e315f53cc2457a4212283</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqGwspKBNeX8FdsjqiAFlY8hCDbLcWxIaWllB0H_PUZBRUxMJ53ueV89h9AxhjEGIGfz535MsQLMgILaQRkGJQrAWO6iDGjJCgWE7aODGOeQ1hxkhk7qF5e3XezNm3V5XDvbh_dlvvK5yfvg3CHa82YR3dHPHKGHy4t6Mi1md9XV5HxWWMpLVZTcNbJsVMsYMd43LTNcpjaMHTGNAyKsKSWVBCxzFHPPqbWEcWEYwYRIOkLjIdeGVYzBeb0O3dKEjcagv_V00tO_egk4HYC1idYsfEgCXdxSTBAhAdKZGs4-uoXb_BOqr6v6T0UxsOk97nPLmvCqS0EF14-3lZ5W9ZTf38z0E_0CryttMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The distance spectrum of a tree</title><source>Access via Wiley Online Library</source><creator>Merris, Russell</creator><creatorcontrib>Merris, Russell</creatorcontrib><description>Let T be a tree with line graph T*. Define K = 2I + A(T*), where A denotes the adjacency matrix. Then the eigenvalues of ‐2K−1 interlace the eigenvalues of the distance matrix D. This permits numerous results about the spectrum of K to be transcribed for the less tractable D.</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.3190140309</identifier><identifier>CODEN: JGTHDO</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Combinatorics. Ordered structures ; Exact sciences and technology ; Mathematics ; Sciences and techniques of general use</subject><ispartof>Journal of graph theory, 1990-07, Vol.14 (3), p.365-369</ispartof><rights>Copyright © 1990 Wiley Periodicals, Inc., A Wiley Company</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3569-65eb86b9d442affbd4a5802411e2abe027ca683820c4e315f53cc2457a4212283</citedby><cites>FETCH-LOGICAL-c3569-65eb86b9d442affbd4a5802411e2abe027ca683820c4e315f53cc2457a4212283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.3190140309$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.3190140309$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4727800$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Merris, Russell</creatorcontrib><title>The distance spectrum of a tree</title><title>Journal of graph theory</title><addtitle>J. Graph Theory</addtitle><description>Let T be a tree with line graph T*. Define K = 2I + A(T*), where A denotes the adjacency matrix. Then the eigenvalues of ‐2K−1 interlace the eigenvalues of the distance matrix D. This permits numerous results about the spectrum of K to be transcribed for the less tractable D.</description><subject>Combinatorics. Ordered structures</subject><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqGwspKBNeX8FdsjqiAFlY8hCDbLcWxIaWllB0H_PUZBRUxMJ53ueV89h9AxhjEGIGfz535MsQLMgILaQRkGJQrAWO6iDGjJCgWE7aODGOeQ1hxkhk7qF5e3XezNm3V5XDvbh_dlvvK5yfvg3CHa82YR3dHPHKGHy4t6Mi1md9XV5HxWWMpLVZTcNbJsVMsYMd43LTNcpjaMHTGNAyKsKSWVBCxzFHPPqbWEcWEYwYRIOkLjIdeGVYzBeb0O3dKEjcagv_V00tO_egk4HYC1idYsfEgCXdxSTBAhAdKZGs4-uoXb_BOqr6v6T0UxsOk97nPLmvCqS0EF14-3lZ5W9ZTf38z0E_0CryttMw</recordid><startdate>199007</startdate><enddate>199007</enddate><creator>Merris, Russell</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199007</creationdate><title>The distance spectrum of a tree</title><author>Merris, Russell</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3569-65eb86b9d442affbd4a5802411e2abe027ca683820c4e315f53cc2457a4212283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Combinatorics. Ordered structures</topic><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merris, Russell</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merris, Russell</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The distance spectrum of a tree</atitle><jtitle>Journal of graph theory</jtitle><addtitle>J. Graph Theory</addtitle><date>1990-07</date><risdate>1990</risdate><volume>14</volume><issue>3</issue><spage>365</spage><epage>369</epage><pages>365-369</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><coden>JGTHDO</coden><abstract>Let T be a tree with line graph T*. Define K = 2I + A(T*), where A denotes the adjacency matrix. Then the eigenvalues of ‐2K−1 interlace the eigenvalues of the distance matrix D. This permits numerous results about the spectrum of K to be transcribed for the less tractable D.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/jgt.3190140309</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-9024 |
ispartof | Journal of graph theory, 1990-07, Vol.14 (3), p.365-369 |
issn | 0364-9024 1097-0118 |
language | eng |
recordid | cdi_crossref_primary_10_1002_jgt_3190140309 |
source | Access via Wiley Online Library |
subjects | Combinatorics. Ordered structures Exact sciences and technology Mathematics Sciences and techniques of general use |
title | The distance spectrum of a tree |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20distance%20spectrum%20of%20a%20tree&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Merris,%20Russell&rft.date=1990-07&rft.volume=14&rft.issue=3&rft.spage=365&rft.epage=369&rft.pages=365-369&rft.issn=0364-9024&rft.eissn=1097-0118&rft.coden=JGTHDO&rft_id=info:doi/10.1002/jgt.3190140309&rft_dat=%3Cistex_cross%3Eark_67375_WNG_HGTH5PML_X%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |