Small vertex-transitive and Cayley graphs of girth six and given degree: an algebraic approach

We examine the existing constructions of the smallest known vertex‐transitive graphs of a given degree and girth 6. It turns out that most of these graphs can be described in terms of regular lifts of suitable quotient graphs. A further outcome of our analysis is a precise identification of which of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2011-12, Vol.68 (4), p.265-284
Hauptverfasser: Loz, Eyal, Mačaj, Martin, Miller, Mirka, Šiagiová, Jana, Širáň, Jozef, Tomanová, Jana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 284
container_issue 4
container_start_page 265
container_title Journal of graph theory
container_volume 68
creator Loz, Eyal
Mačaj, Martin
Miller, Mirka
Šiagiová, Jana
Širáň, Jozef
Tomanová, Jana
description We examine the existing constructions of the smallest known vertex‐transitive graphs of a given degree and girth 6. It turns out that most of these graphs can be described in terms of regular lifts of suitable quotient graphs. A further outcome of our analysis is a precise identification of which of these graphs are Cayley. We also investigate higher level of transitivity of the smallest known vertex‐transitive graphs of a given degree and girth 6 and relate their constructions to near‐difference sets. © 2010 Wiley Periodicals, Inc. J Graph Theory 68:265‐284, 2011
doi_str_mv 10.1002/jgt.20556
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jgt_20556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_QMSD9GMV_V</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3076-a829b794632a7906d6a666b2a4cce64719d966db586415dee6732a6192a8814a3</originalsourceid><addsrcrecordid>eNp1kMFOwzAMhiMEEmNw4A1y5VCWtKnbcEMDCmgDoY1xI3LbrMvotiqpxvb2hA24cbJkf79lf4Scc3bJGQt786q9DFkcwwHpcCaTgHGeHpIOi0AEkoXimJw4N2e-HbO0Q95HC6xruta21Zugtbh0pjVrTXFZ0j5ua72llcVm5uhqSitj2xl1ZrMbV55b0lJXVusr36FYVzq3aAqKTWNXWMxOydEUa6fPfmqXvN7djvv3weA5e-hfD4IiYgkEmIYyT6SAKMREMigBASAPURSFBpFwWUqAMo9TEDwutYbEk8BliGnKBUZdcrHfW9iVc1ZPVWPNAu1Wcaa-xSgvRu3EeLa3Zz-N_-5_UD1m499EsE8Y5y39JdB-KH9IEqu3p0y9DEc3MhtO1CT6AuMkc-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Small vertex-transitive and Cayley graphs of girth six and given degree: an algebraic approach</title><source>Wiley Journals</source><creator>Loz, Eyal ; Mačaj, Martin ; Miller, Mirka ; Šiagiová, Jana ; Širáň, Jozef ; Tomanová, Jana</creator><creatorcontrib>Loz, Eyal ; Mačaj, Martin ; Miller, Mirka ; Šiagiová, Jana ; Širáň, Jozef ; Tomanová, Jana</creatorcontrib><description>We examine the existing constructions of the smallest known vertex‐transitive graphs of a given degree and girth 6. It turns out that most of these graphs can be described in terms of regular lifts of suitable quotient graphs. A further outcome of our analysis is a precise identification of which of these graphs are Cayley. We also investigate higher level of transitivity of the smallest known vertex‐transitive graphs of a given degree and girth 6 and relate their constructions to near‐difference sets. © 2010 Wiley Periodicals, Inc. J Graph Theory 68:265‐284, 2011</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.20556</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>cage ; degree ; girth ; graph</subject><ispartof>Journal of graph theory, 2011-12, Vol.68 (4), p.265-284</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3076-a829b794632a7906d6a666b2a4cce64719d966db586415dee6732a6192a8814a3</citedby><cites>FETCH-LOGICAL-c3076-a829b794632a7906d6a666b2a4cce64719d966db586415dee6732a6192a8814a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.20556$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.20556$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Loz, Eyal</creatorcontrib><creatorcontrib>Mačaj, Martin</creatorcontrib><creatorcontrib>Miller, Mirka</creatorcontrib><creatorcontrib>Šiagiová, Jana</creatorcontrib><creatorcontrib>Širáň, Jozef</creatorcontrib><creatorcontrib>Tomanová, Jana</creatorcontrib><title>Small vertex-transitive and Cayley graphs of girth six and given degree: an algebraic approach</title><title>Journal of graph theory</title><addtitle>J. Graph Theory</addtitle><description>We examine the existing constructions of the smallest known vertex‐transitive graphs of a given degree and girth 6. It turns out that most of these graphs can be described in terms of regular lifts of suitable quotient graphs. A further outcome of our analysis is a precise identification of which of these graphs are Cayley. We also investigate higher level of transitivity of the smallest known vertex‐transitive graphs of a given degree and girth 6 and relate their constructions to near‐difference sets. © 2010 Wiley Periodicals, Inc. J Graph Theory 68:265‐284, 2011</description><subject>cage</subject><subject>degree</subject><subject>girth</subject><subject>graph</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwzAMhiMEEmNw4A1y5VCWtKnbcEMDCmgDoY1xI3LbrMvotiqpxvb2hA24cbJkf79lf4Scc3bJGQt786q9DFkcwwHpcCaTgHGeHpIOi0AEkoXimJw4N2e-HbO0Q95HC6xruta21Zugtbh0pjVrTXFZ0j5ua72llcVm5uhqSitj2xl1ZrMbV55b0lJXVusr36FYVzq3aAqKTWNXWMxOydEUa6fPfmqXvN7djvv3weA5e-hfD4IiYgkEmIYyT6SAKMREMigBASAPURSFBpFwWUqAMo9TEDwutYbEk8BliGnKBUZdcrHfW9iVc1ZPVWPNAu1Wcaa-xSgvRu3EeLa3Zz-N_-5_UD1m499EsE8Y5y39JdB-KH9IEqu3p0y9DEc3MhtO1CT6AuMkc-w</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Loz, Eyal</creator><creator>Mačaj, Martin</creator><creator>Miller, Mirka</creator><creator>Šiagiová, Jana</creator><creator>Širáň, Jozef</creator><creator>Tomanová, Jana</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201112</creationdate><title>Small vertex-transitive and Cayley graphs of girth six and given degree: an algebraic approach</title><author>Loz, Eyal ; Mačaj, Martin ; Miller, Mirka ; Šiagiová, Jana ; Širáň, Jozef ; Tomanová, Jana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3076-a829b794632a7906d6a666b2a4cce64719d966db586415dee6732a6192a8814a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>cage</topic><topic>degree</topic><topic>girth</topic><topic>graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loz, Eyal</creatorcontrib><creatorcontrib>Mačaj, Martin</creatorcontrib><creatorcontrib>Miller, Mirka</creatorcontrib><creatorcontrib>Šiagiová, Jana</creatorcontrib><creatorcontrib>Širáň, Jozef</creatorcontrib><creatorcontrib>Tomanová, Jana</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loz, Eyal</au><au>Mačaj, Martin</au><au>Miller, Mirka</au><au>Šiagiová, Jana</au><au>Širáň, Jozef</au><au>Tomanová, Jana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small vertex-transitive and Cayley graphs of girth six and given degree: an algebraic approach</atitle><jtitle>Journal of graph theory</jtitle><addtitle>J. Graph Theory</addtitle><date>2011-12</date><risdate>2011</risdate><volume>68</volume><issue>4</issue><spage>265</spage><epage>284</epage><pages>265-284</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><abstract>We examine the existing constructions of the smallest known vertex‐transitive graphs of a given degree and girth 6. It turns out that most of these graphs can be described in terms of regular lifts of suitable quotient graphs. A further outcome of our analysis is a precise identification of which of these graphs are Cayley. We also investigate higher level of transitivity of the smallest known vertex‐transitive graphs of a given degree and girth 6 and relate their constructions to near‐difference sets. © 2010 Wiley Periodicals, Inc. J Graph Theory 68:265‐284, 2011</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/jgt.20556</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0364-9024
ispartof Journal of graph theory, 2011-12, Vol.68 (4), p.265-284
issn 0364-9024
1097-0118
language eng
recordid cdi_crossref_primary_10_1002_jgt_20556
source Wiley Journals
subjects cage
degree
girth
graph
title Small vertex-transitive and Cayley graphs of girth six and given degree: an algebraic approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A16%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small%20vertex-transitive%20and%20Cayley%20graphs%20of%20girth%20six%20and%20given%20degree:%20an%20algebraic%20approach&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Loz,%20Eyal&rft.date=2011-12&rft.volume=68&rft.issue=4&rft.spage=265&rft.epage=284&rft.pages=265-284&rft.issn=0364-9024&rft.eissn=1097-0118&rft_id=info:doi/10.1002/jgt.20556&rft_dat=%3Cistex_cross%3Eark_67375_WNG_QMSD9GMV_V%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true