Vertex-pancyclicity of hypertournaments

A hypertournament or a k‐tournament, on n vertices, 2≤k≤n, is a pair T=(V, E), where the vertex set V is a set of size n and the edge set E is the collection of all possible subsets of size k of V, called the edges, each taken in one of its k! possible permutations. A k‐tournament is pancyclic if th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of graph theory 2010-04, Vol.63 (4), p.338-348
1. Verfasser: Yang, Jed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 348
container_issue 4
container_start_page 338
container_title Journal of graph theory
container_volume 63
creator Yang, Jed
description A hypertournament or a k‐tournament, on n vertices, 2≤k≤n, is a pair T=(V, E), where the vertex set V is a set of size n and the edge set E is the collection of all possible subsets of size k of V, called the edges, each taken in one of its k! possible permutations. A k‐tournament is pancyclic if there exists (directed) cycles of all possible lengths; it is vertex‐pancyclic if moreover the cycles can be found through any vertex. A k‐tournament is strong if there is a path from u to v for each pair of distinct vertices u and v. A question posed by Gutin and Yeo about the characterization of pancyclic and vertex‐pancyclic hypertournaments is examined in this article. We extend Moon's Theorem for tournaments to hypertournaments. We prove that if k≥8 and n≥k + 3, then a k‐tournament on n vertices is vertex‐pancyclic if and only if it is strong. Similar results hold for other values of k. We also show that when n≥7, k≥4, and n≥k + 2, a strong k‐tournament on n vertices is pancyclic if and only if it is strong. The bound n≥k+ 2 is tight. We also find bounds for the generalized problem when we extend vertex‐pancyclicity to require d edge‐disjoint cycles of each possible length and extend strong connectivity to require d edge‐disjoint paths between each pair of vertices. Our results include and extend those of Petrovic and Thomassen. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 338–348, 2010
doi_str_mv 10.1002/jgt.20432
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jgt_20432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JGT20432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3072-67e38119b4b7e7482ebe1d84d05c3d6ccdfdfb7a108fa5a3711455e40f042a133</originalsourceid><addsrcrecordid>eNp1j01LxDAQQIMouK4e_Ad7Ew_ZnUnSpj3KolVZ_ICqx5CmiXbttiWpaP-91VVvngZm3ht4hBwjzBGALdbP_ZyB4GyHTBBSSQEx2SUT4LGgKTCxTw5CWMO4jiCZkJNH63v7QTvdmMHUlan6Yda62cvQjYf2zTd6Y5s-HJI9p-tgj37mlDxcnOfLS7q6za6WZytqOEhGY2l5gpgWopBWioTZwmKZiBIiw8vYmNKVrpAaIXE60lwiiiiyAhwIppHzKTnd_jW-DcFbpzpfbbQfFIL6KlRjofouHNnFln2vajv8D6rrLP816Naowhj9Z2j_qmLJZaSebjJ1d7_ELI-FyvgnWIVhNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vertex-pancyclicity of hypertournaments</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Jed</creator><creatorcontrib>Yang, Jed</creatorcontrib><description>A hypertournament or a k‐tournament, on n vertices, 2≤k≤n, is a pair T=(V, E), where the vertex set V is a set of size n and the edge set E is the collection of all possible subsets of size k of V, called the edges, each taken in one of its k! possible permutations. A k‐tournament is pancyclic if there exists (directed) cycles of all possible lengths; it is vertex‐pancyclic if moreover the cycles can be found through any vertex. A k‐tournament is strong if there is a path from u to v for each pair of distinct vertices u and v. A question posed by Gutin and Yeo about the characterization of pancyclic and vertex‐pancyclic hypertournaments is examined in this article. We extend Moon's Theorem for tournaments to hypertournaments. We prove that if k≥8 and n≥k + 3, then a k‐tournament on n vertices is vertex‐pancyclic if and only if it is strong. Similar results hold for other values of k. We also show that when n≥7, k≥4, and n≥k + 2, a strong k‐tournament on n vertices is pancyclic if and only if it is strong. The bound n≥k+ 2 is tight. We also find bounds for the generalized problem when we extend vertex‐pancyclicity to require d edge‐disjoint cycles of each possible length and extend strong connectivity to require d edge‐disjoint paths between each pair of vertices. Our results include and extend those of Petrovic and Thomassen. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 338–348, 2010</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.20432</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Hamiltonian cycles ; hypertournaments</subject><ispartof>Journal of graph theory, 2010-04, Vol.63 (4), p.338-348</ispartof><rights>2009 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3072-67e38119b4b7e7482ebe1d84d05c3d6ccdfdfb7a108fa5a3711455e40f042a133</citedby><cites>FETCH-LOGICAL-c3072-67e38119b4b7e7482ebe1d84d05c3d6ccdfdfb7a108fa5a3711455e40f042a133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.20432$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.20432$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Yang, Jed</creatorcontrib><title>Vertex-pancyclicity of hypertournaments</title><title>Journal of graph theory</title><addtitle>J. Graph Theory</addtitle><description>A hypertournament or a k‐tournament, on n vertices, 2≤k≤n, is a pair T=(V, E), where the vertex set V is a set of size n and the edge set E is the collection of all possible subsets of size k of V, called the edges, each taken in one of its k! possible permutations. A k‐tournament is pancyclic if there exists (directed) cycles of all possible lengths; it is vertex‐pancyclic if moreover the cycles can be found through any vertex. A k‐tournament is strong if there is a path from u to v for each pair of distinct vertices u and v. A question posed by Gutin and Yeo about the characterization of pancyclic and vertex‐pancyclic hypertournaments is examined in this article. We extend Moon's Theorem for tournaments to hypertournaments. We prove that if k≥8 and n≥k + 3, then a k‐tournament on n vertices is vertex‐pancyclic if and only if it is strong. Similar results hold for other values of k. We also show that when n≥7, k≥4, and n≥k + 2, a strong k‐tournament on n vertices is pancyclic if and only if it is strong. The bound n≥k+ 2 is tight. We also find bounds for the generalized problem when we extend vertex‐pancyclicity to require d edge‐disjoint cycles of each possible length and extend strong connectivity to require d edge‐disjoint paths between each pair of vertices. Our results include and extend those of Petrovic and Thomassen. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 338–348, 2010</description><subject>Hamiltonian cycles</subject><subject>hypertournaments</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1j01LxDAQQIMouK4e_Ad7Ew_ZnUnSpj3KolVZ_ICqx5CmiXbttiWpaP-91VVvngZm3ht4hBwjzBGALdbP_ZyB4GyHTBBSSQEx2SUT4LGgKTCxTw5CWMO4jiCZkJNH63v7QTvdmMHUlan6Yda62cvQjYf2zTd6Y5s-HJI9p-tgj37mlDxcnOfLS7q6za6WZytqOEhGY2l5gpgWopBWioTZwmKZiBIiw8vYmNKVrpAaIXE60lwiiiiyAhwIppHzKTnd_jW-DcFbpzpfbbQfFIL6KlRjofouHNnFln2vajv8D6rrLP816Naowhj9Z2j_qmLJZaSebjJ1d7_ELI-FyvgnWIVhNw</recordid><startdate>201004</startdate><enddate>201004</enddate><creator>Yang, Jed</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201004</creationdate><title>Vertex-pancyclicity of hypertournaments</title><author>Yang, Jed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3072-67e38119b4b7e7482ebe1d84d05c3d6ccdfdfb7a108fa5a3711455e40f042a133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Hamiltonian cycles</topic><topic>hypertournaments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jed</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vertex-pancyclicity of hypertournaments</atitle><jtitle>Journal of graph theory</jtitle><addtitle>J. Graph Theory</addtitle><date>2010-04</date><risdate>2010</risdate><volume>63</volume><issue>4</issue><spage>338</spage><epage>348</epage><pages>338-348</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><abstract>A hypertournament or a k‐tournament, on n vertices, 2≤k≤n, is a pair T=(V, E), where the vertex set V is a set of size n and the edge set E is the collection of all possible subsets of size k of V, called the edges, each taken in one of its k! possible permutations. A k‐tournament is pancyclic if there exists (directed) cycles of all possible lengths; it is vertex‐pancyclic if moreover the cycles can be found through any vertex. A k‐tournament is strong if there is a path from u to v for each pair of distinct vertices u and v. A question posed by Gutin and Yeo about the characterization of pancyclic and vertex‐pancyclic hypertournaments is examined in this article. We extend Moon's Theorem for tournaments to hypertournaments. We prove that if k≥8 and n≥k + 3, then a k‐tournament on n vertices is vertex‐pancyclic if and only if it is strong. Similar results hold for other values of k. We also show that when n≥7, k≥4, and n≥k + 2, a strong k‐tournament on n vertices is pancyclic if and only if it is strong. The bound n≥k+ 2 is tight. We also find bounds for the generalized problem when we extend vertex‐pancyclicity to require d edge‐disjoint cycles of each possible length and extend strong connectivity to require d edge‐disjoint paths between each pair of vertices. Our results include and extend those of Petrovic and Thomassen. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 338–348, 2010</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/jgt.20432</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0364-9024
ispartof Journal of graph theory, 2010-04, Vol.63 (4), p.338-348
issn 0364-9024
1097-0118
language eng
recordid cdi_crossref_primary_10_1002_jgt_20432
source Wiley Online Library Journals Frontfile Complete
subjects Hamiltonian cycles
hypertournaments
title Vertex-pancyclicity of hypertournaments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A49%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vertex-pancyclicity%20of%20hypertournaments&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Yang,%20Jed&rft.date=2010-04&rft.volume=63&rft.issue=4&rft.spage=338&rft.epage=348&rft.pages=338-348&rft.issn=0364-9024&rft.eissn=1097-0118&rft_id=info:doi/10.1002/jgt.20432&rft_dat=%3Cwiley_cross%3EJGT20432%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true