Global Research Alliance N 2 O chamber methodology guidelines: Design considerations
Terrestrial ecosystems, both natural ecosystems and agroecosystems, generate greenhouse gases (GHGs). The chamber method is the most common method to quantify GHG fluxes from soil–plant systems and to better understand factors affecting their generation and mitigation. The objective of this study wa...
Gespeichert in:
Veröffentlicht in: | Journal of environmental quality 2020-09, Vol.49 (5), p.1081-1091 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1091 |
---|---|
container_issue | 5 |
container_start_page | 1081 |
container_title | Journal of environmental quality |
container_volume | 49 |
creator | Clough, Timothy J. Rochette, Philippe Thomas, Steve M. Pihlatie, Mari Christiansen, Jesper R. Thorman, Rachel E. |
description | Terrestrial ecosystems, both natural ecosystems and agroecosystems, generate greenhouse gases (GHGs). The chamber method is the most common method to quantify GHG fluxes from soil–plant systems and to better understand factors affecting their generation and mitigation. The objective of this study was to review and synthesize literature on chamber designs (non‐flow‐through, non‐steady‐state chamber) and associated factors that affect GHG nitrous oxide (N
2
O) flux measurement when using chamber methods. Chamber design requires consideration of many facets that include materials, insulation, sealing, venting, depth of placement, and the need to maintain plant growth and activity. Final designs should be tailored, and bench tested, in order to meet the nuances of the experimental objectives and the ecosystem under study while reducing potential artifacts. Good insulation, to prevent temperature fluctuations and pressure changes, and a high‐quality seal between base and chamber are essential. Elimination of pressure differentials between headspace and atmosphere through venting should be performed, and designs now exist to eliminate Venturi effects of earlier tube‐type vent designs. The use of fans within the chamber headspace increases measurement precision but may alter the flux. To establish best practice recommendations when using fans, further data are required, particularly in systems containing tall plants, to systematically evaluate the effects that fan speed, position, and mixing rate have on soil gas flux. |
doi_str_mv | 10.1002/jeq2.20117 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jeq2_20117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_jeq2_20117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c767-48af35a752225cdd5b22fae6e7bd263650a4d960de235a79faf6997ffc5c16723</originalsourceid><addsrcrecordid>eNotkDFPwzAUhC0EEqGw8As8I6XYL7FN2KoCBamiEsoeOfZz4spJwC5D_z0psNydTqcbPkJuOVtyxuB-j1-wBMa5OiMZF4XKYZZzkjFWzrkEcUmuUtozxoEpmZF6E6ZWB_qBCXU0PV2F4PVokL5ToDtqej20GOmAh36yU5i6I-2-vcXgR0yP9AmT70ZqpjHNZdQHP6drcuF0SHjz7wtSvzzX69d8u9u8rVfb3Cip8vJBu0JoJQBAGGtFC-A0SlStBVlIwXRpK8kswmlWOe1kVSnnjDBcKigW5O7v1sQppYiu-Yx-0PHYcNaccDQnHM0vjuIHisNTFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Global Research Alliance N 2 O chamber methodology guidelines: Design considerations</title><source>Wiley Journals</source><creator>Clough, Timothy J. ; Rochette, Philippe ; Thomas, Steve M. ; Pihlatie, Mari ; Christiansen, Jesper R. ; Thorman, Rachel E.</creator><creatorcontrib>Clough, Timothy J. ; Rochette, Philippe ; Thomas, Steve M. ; Pihlatie, Mari ; Christiansen, Jesper R. ; Thorman, Rachel E.</creatorcontrib><description>Terrestrial ecosystems, both natural ecosystems and agroecosystems, generate greenhouse gases (GHGs). The chamber method is the most common method to quantify GHG fluxes from soil–plant systems and to better understand factors affecting their generation and mitigation. The objective of this study was to review and synthesize literature on chamber designs (non‐flow‐through, non‐steady‐state chamber) and associated factors that affect GHG nitrous oxide (N
2
O) flux measurement when using chamber methods. Chamber design requires consideration of many facets that include materials, insulation, sealing, venting, depth of placement, and the need to maintain plant growth and activity. Final designs should be tailored, and bench tested, in order to meet the nuances of the experimental objectives and the ecosystem under study while reducing potential artifacts. Good insulation, to prevent temperature fluctuations and pressure changes, and a high‐quality seal between base and chamber are essential. Elimination of pressure differentials between headspace and atmosphere through venting should be performed, and designs now exist to eliminate Venturi effects of earlier tube‐type vent designs. The use of fans within the chamber headspace increases measurement precision but may alter the flux. To establish best practice recommendations when using fans, further data are required, particularly in systems containing tall plants, to systematically evaluate the effects that fan speed, position, and mixing rate have on soil gas flux.</description><identifier>ISSN: 0047-2425</identifier><identifier>EISSN: 1537-2537</identifier><identifier>DOI: 10.1002/jeq2.20117</identifier><language>eng</language><ispartof>Journal of environmental quality, 2020-09, Vol.49 (5), p.1081-1091</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c767-48af35a752225cdd5b22fae6e7bd263650a4d960de235a79faf6997ffc5c16723</citedby><cites>FETCH-LOGICAL-c767-48af35a752225cdd5b22fae6e7bd263650a4d960de235a79faf6997ffc5c16723</cites><orcidid>0000-0002-5978-5274 ; 0000-0002-3277-0734</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Clough, Timothy J.</creatorcontrib><creatorcontrib>Rochette, Philippe</creatorcontrib><creatorcontrib>Thomas, Steve M.</creatorcontrib><creatorcontrib>Pihlatie, Mari</creatorcontrib><creatorcontrib>Christiansen, Jesper R.</creatorcontrib><creatorcontrib>Thorman, Rachel E.</creatorcontrib><title>Global Research Alliance N 2 O chamber methodology guidelines: Design considerations</title><title>Journal of environmental quality</title><description>Terrestrial ecosystems, both natural ecosystems and agroecosystems, generate greenhouse gases (GHGs). The chamber method is the most common method to quantify GHG fluxes from soil–plant systems and to better understand factors affecting their generation and mitigation. The objective of this study was to review and synthesize literature on chamber designs (non‐flow‐through, non‐steady‐state chamber) and associated factors that affect GHG nitrous oxide (N
2
O) flux measurement when using chamber methods. Chamber design requires consideration of many facets that include materials, insulation, sealing, venting, depth of placement, and the need to maintain plant growth and activity. Final designs should be tailored, and bench tested, in order to meet the nuances of the experimental objectives and the ecosystem under study while reducing potential artifacts. Good insulation, to prevent temperature fluctuations and pressure changes, and a high‐quality seal between base and chamber are essential. Elimination of pressure differentials between headspace and atmosphere through venting should be performed, and designs now exist to eliminate Venturi effects of earlier tube‐type vent designs. The use of fans within the chamber headspace increases measurement precision but may alter the flux. To establish best practice recommendations when using fans, further data are required, particularly in systems containing tall plants, to systematically evaluate the effects that fan speed, position, and mixing rate have on soil gas flux.</description><issn>0047-2425</issn><issn>1537-2537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkDFPwzAUhC0EEqGw8As8I6XYL7FN2KoCBamiEsoeOfZz4spJwC5D_z0psNydTqcbPkJuOVtyxuB-j1-wBMa5OiMZF4XKYZZzkjFWzrkEcUmuUtozxoEpmZF6E6ZWB_qBCXU0PV2F4PVokL5ToDtqej20GOmAh36yU5i6I-2-vcXgR0yP9AmT70ZqpjHNZdQHP6drcuF0SHjz7wtSvzzX69d8u9u8rVfb3Cip8vJBu0JoJQBAGGtFC-A0SlStBVlIwXRpK8kswmlWOe1kVSnnjDBcKigW5O7v1sQppYiu-Yx-0PHYcNaccDQnHM0vjuIHisNTFA</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Clough, Timothy J.</creator><creator>Rochette, Philippe</creator><creator>Thomas, Steve M.</creator><creator>Pihlatie, Mari</creator><creator>Christiansen, Jesper R.</creator><creator>Thorman, Rachel E.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5978-5274</orcidid><orcidid>https://orcid.org/0000-0002-3277-0734</orcidid></search><sort><creationdate>202009</creationdate><title>Global Research Alliance N 2 O chamber methodology guidelines: Design considerations</title><author>Clough, Timothy J. ; Rochette, Philippe ; Thomas, Steve M. ; Pihlatie, Mari ; Christiansen, Jesper R. ; Thorman, Rachel E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c767-48af35a752225cdd5b22fae6e7bd263650a4d960de235a79faf6997ffc5c16723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clough, Timothy J.</creatorcontrib><creatorcontrib>Rochette, Philippe</creatorcontrib><creatorcontrib>Thomas, Steve M.</creatorcontrib><creatorcontrib>Pihlatie, Mari</creatorcontrib><creatorcontrib>Christiansen, Jesper R.</creatorcontrib><creatorcontrib>Thorman, Rachel E.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of environmental quality</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clough, Timothy J.</au><au>Rochette, Philippe</au><au>Thomas, Steve M.</au><au>Pihlatie, Mari</au><au>Christiansen, Jesper R.</au><au>Thorman, Rachel E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Research Alliance N 2 O chamber methodology guidelines: Design considerations</atitle><jtitle>Journal of environmental quality</jtitle><date>2020-09</date><risdate>2020</risdate><volume>49</volume><issue>5</issue><spage>1081</spage><epage>1091</epage><pages>1081-1091</pages><issn>0047-2425</issn><eissn>1537-2537</eissn><abstract>Terrestrial ecosystems, both natural ecosystems and agroecosystems, generate greenhouse gases (GHGs). The chamber method is the most common method to quantify GHG fluxes from soil–plant systems and to better understand factors affecting their generation and mitigation. The objective of this study was to review and synthesize literature on chamber designs (non‐flow‐through, non‐steady‐state chamber) and associated factors that affect GHG nitrous oxide (N
2
O) flux measurement when using chamber methods. Chamber design requires consideration of many facets that include materials, insulation, sealing, venting, depth of placement, and the need to maintain plant growth and activity. Final designs should be tailored, and bench tested, in order to meet the nuances of the experimental objectives and the ecosystem under study while reducing potential artifacts. Good insulation, to prevent temperature fluctuations and pressure changes, and a high‐quality seal between base and chamber are essential. Elimination of pressure differentials between headspace and atmosphere through venting should be performed, and designs now exist to eliminate Venturi effects of earlier tube‐type vent designs. The use of fans within the chamber headspace increases measurement precision but may alter the flux. To establish best practice recommendations when using fans, further data are required, particularly in systems containing tall plants, to systematically evaluate the effects that fan speed, position, and mixing rate have on soil gas flux.</abstract><doi>10.1002/jeq2.20117</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5978-5274</orcidid><orcidid>https://orcid.org/0000-0002-3277-0734</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0047-2425 |
ispartof | Journal of environmental quality, 2020-09, Vol.49 (5), p.1081-1091 |
issn | 0047-2425 1537-2537 |
language | eng |
recordid | cdi_crossref_primary_10_1002_jeq2_20117 |
source | Wiley Journals |
title | Global Research Alliance N 2 O chamber methodology guidelines: Design considerations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Research%20Alliance%20N%202%20O%20chamber%20methodology%20guidelines:%20Design%20considerations&rft.jtitle=Journal%20of%20environmental%20quality&rft.au=Clough,%20Timothy%20J.&rft.date=2020-09&rft.volume=49&rft.issue=5&rft.spage=1081&rft.epage=1091&rft.pages=1081-1091&rft.issn=0047-2425&rft.eissn=1537-2537&rft_id=info:doi/10.1002/jeq2.20117&rft_dat=%3Ccrossref%3E10_1002_jeq2_20117%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |