First and second derivative matrix elements for the stretching, bending, and torsional energy

Matrix elements for the first and second derivatives of the internal coordinates with respect to Cartesian coordinates are reported for stretching, linear, nonlinear, and out‐of‐plane bending and torsional motion. Derivatives of the energy with respect to the Cartesian coordinates are calculated wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 1989-01, Vol.10 (1), p.63-76
Hauptverfasser: Miller, Kenneth J., Hinde, Robert J., Anderson, Janet
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue 1
container_start_page 63
container_title Journal of computational chemistry
container_volume 10
creator Miller, Kenneth J.
Hinde, Robert J.
Anderson, Janet
description Matrix elements for the first and second derivatives of the internal coordinates with respect to Cartesian coordinates are reported for stretching, linear, nonlinear, and out‐of‐plane bending and torsional motion. Derivatives of the energy with respect to the Cartesian coordinates are calculated with the chain rule. Derivatives of the energy with respect to the internal coordinates are straightforward, but the calculation of the derivatives of the internal coordinates with respect to the Cartesian coordinates can be simplified by the following two steps outlined in this article. First, the number of terms in the analytical functions can be reduced or will vanish when the derivatives of the bond length, bond angle, and torsion angle are reported in a local coordinate system in which one bond lies on an axis and an adjacent bond lies in the plane of two axes or is projected onto perpendicular planes for linear and out‐of‐plane bending motion. Second, a simple rotation transforms these derivatives to the appropriate orientation in the space‐fixed molecular coordinate system. Functions of the internal coordinates are invariant with respect to translation and rotation. The translational invariance and the symmetry of the second derivatives for a system with L atoms are used to select L‐1‐ and L(L‐1)/2‐independent first and second derivatives, respectively, of which approximately half of the latter vanish in the local coordinate system. The rotational invariance permits the transformation of the simplified derivatives in the local coordinate system to any orientation in space. The approach outlined in this article simplifies the formulas by expressing them in a local coordinate system, identifies the most convenient independent elements to compute, from which the dependent ones are calculated, and defines a transformation to the space‐fixed molecular coordinate system.
doi_str_mv 10.1002/jcc.540100107
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jcc_540100107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_M79H5BCK_8</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3897-9e8cc8d873bf1608358f4fdd62937acdd5e31dc236415bc6e5f627de223a5773</originalsourceid><addsrcrecordid>eNp9kE1PAjEYhBujiYgevfcHuNhu6ccedSOgol5I9GKa0r4LxWXXtA3CvxeUEE-eZg7PzCSD0CUlPUpIfr2wtsf7ZOspkUeoQ0khskLJt2PUIbTIMyU4PUVnMS4IIYyLfge9D3yICZvG4Qi23YqD4Fcm-RXgpUnBrzHUsIQmRVy1Aac54JgCJDv3zewKT6FxP2ZXkdoQfduYGkMDYbY5RyeVqSNc7LWLJoO7STnKxi_D-_JmnFmmCpkVoKxVTkk2ragginFV9SvnRF4waaxzHBh1NmeiT_nUCuCVyKWDPGeGS8m6KPuttaGNMUClP4NfmrDRlOjdNXp7jT5cs-XlL__la9j8D-uHsvyb3C_5mGB9SJrwoYVkkuvX56F-ksWI35aPWrFvvph3ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>First and second derivative matrix elements for the stretching, bending, and torsional energy</title><source>Wiley Online Library All Journals</source><creator>Miller, Kenneth J. ; Hinde, Robert J. ; Anderson, Janet</creator><creatorcontrib>Miller, Kenneth J. ; Hinde, Robert J. ; Anderson, Janet</creatorcontrib><description>Matrix elements for the first and second derivatives of the internal coordinates with respect to Cartesian coordinates are reported for stretching, linear, nonlinear, and out‐of‐plane bending and torsional motion. Derivatives of the energy with respect to the Cartesian coordinates are calculated with the chain rule. Derivatives of the energy with respect to the internal coordinates are straightforward, but the calculation of the derivatives of the internal coordinates with respect to the Cartesian coordinates can be simplified by the following two steps outlined in this article. First, the number of terms in the analytical functions can be reduced or will vanish when the derivatives of the bond length, bond angle, and torsion angle are reported in a local coordinate system in which one bond lies on an axis and an adjacent bond lies in the plane of two axes or is projected onto perpendicular planes for linear and out‐of‐plane bending motion. Second, a simple rotation transforms these derivatives to the appropriate orientation in the space‐fixed molecular coordinate system. Functions of the internal coordinates are invariant with respect to translation and rotation. The translational invariance and the symmetry of the second derivatives for a system with L atoms are used to select L‐1‐ and L(L‐1)/2‐independent first and second derivatives, respectively, of which approximately half of the latter vanish in the local coordinate system. The rotational invariance permits the transformation of the simplified derivatives in the local coordinate system to any orientation in space. The approach outlined in this article simplifies the formulas by expressing them in a local coordinate system, identifies the most convenient independent elements to compute, from which the dependent ones are calculated, and defines a transformation to the space‐fixed molecular coordinate system.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.540100107</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><ispartof>Journal of computational chemistry, 1989-01, Vol.10 (1), p.63-76</ispartof><rights>Copyright © 1989 John Wiley &amp; Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3897-9e8cc8d873bf1608358f4fdd62937acdd5e31dc236415bc6e5f627de223a5773</citedby><cites>FETCH-LOGICAL-c3897-9e8cc8d873bf1608358f4fdd62937acdd5e31dc236415bc6e5f627de223a5773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.540100107$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.540100107$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Miller, Kenneth J.</creatorcontrib><creatorcontrib>Hinde, Robert J.</creatorcontrib><creatorcontrib>Anderson, Janet</creatorcontrib><title>First and second derivative matrix elements for the stretching, bending, and torsional energy</title><title>Journal of computational chemistry</title><addtitle>J. Comput. Chem</addtitle><description>Matrix elements for the first and second derivatives of the internal coordinates with respect to Cartesian coordinates are reported for stretching, linear, nonlinear, and out‐of‐plane bending and torsional motion. Derivatives of the energy with respect to the Cartesian coordinates are calculated with the chain rule. Derivatives of the energy with respect to the internal coordinates are straightforward, but the calculation of the derivatives of the internal coordinates with respect to the Cartesian coordinates can be simplified by the following two steps outlined in this article. First, the number of terms in the analytical functions can be reduced or will vanish when the derivatives of the bond length, bond angle, and torsion angle are reported in a local coordinate system in which one bond lies on an axis and an adjacent bond lies in the plane of two axes or is projected onto perpendicular planes for linear and out‐of‐plane bending motion. Second, a simple rotation transforms these derivatives to the appropriate orientation in the space‐fixed molecular coordinate system. Functions of the internal coordinates are invariant with respect to translation and rotation. The translational invariance and the symmetry of the second derivatives for a system with L atoms are used to select L‐1‐ and L(L‐1)/2‐independent first and second derivatives, respectively, of which approximately half of the latter vanish in the local coordinate system. The rotational invariance permits the transformation of the simplified derivatives in the local coordinate system to any orientation in space. The approach outlined in this article simplifies the formulas by expressing them in a local coordinate system, identifies the most convenient independent elements to compute, from which the dependent ones are calculated, and defines a transformation to the space‐fixed molecular coordinate system.</description><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAjEYhBujiYgevfcHuNhu6ccedSOgol5I9GKa0r4LxWXXtA3CvxeUEE-eZg7PzCSD0CUlPUpIfr2wtsf7ZOspkUeoQ0khskLJt2PUIbTIMyU4PUVnMS4IIYyLfge9D3yICZvG4Qi23YqD4Fcm-RXgpUnBrzHUsIQmRVy1Aac54JgCJDv3zewKT6FxP2ZXkdoQfduYGkMDYbY5RyeVqSNc7LWLJoO7STnKxi_D-_JmnFmmCpkVoKxVTkk2ragginFV9SvnRF4waaxzHBh1NmeiT_nUCuCVyKWDPGeGS8m6KPuttaGNMUClP4NfmrDRlOjdNXp7jT5cs-XlL__la9j8D-uHsvyb3C_5mGB9SJrwoYVkkuvX56F-ksWI35aPWrFvvph3ZQ</recordid><startdate>198901</startdate><enddate>198901</enddate><creator>Miller, Kenneth J.</creator><creator>Hinde, Robert J.</creator><creator>Anderson, Janet</creator><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198901</creationdate><title>First and second derivative matrix elements for the stretching, bending, and torsional energy</title><author>Miller, Kenneth J. ; Hinde, Robert J. ; Anderson, Janet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3897-9e8cc8d873bf1608358f4fdd62937acdd5e31dc236415bc6e5f627de223a5773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Kenneth J.</creatorcontrib><creatorcontrib>Hinde, Robert J.</creatorcontrib><creatorcontrib>Anderson, Janet</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Kenneth J.</au><au>Hinde, Robert J.</au><au>Anderson, Janet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First and second derivative matrix elements for the stretching, bending, and torsional energy</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J. Comput. Chem</addtitle><date>1989-01</date><risdate>1989</risdate><volume>10</volume><issue>1</issue><spage>63</spage><epage>76</epage><pages>63-76</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>Matrix elements for the first and second derivatives of the internal coordinates with respect to Cartesian coordinates are reported for stretching, linear, nonlinear, and out‐of‐plane bending and torsional motion. Derivatives of the energy with respect to the Cartesian coordinates are calculated with the chain rule. Derivatives of the energy with respect to the internal coordinates are straightforward, but the calculation of the derivatives of the internal coordinates with respect to the Cartesian coordinates can be simplified by the following two steps outlined in this article. First, the number of terms in the analytical functions can be reduced or will vanish when the derivatives of the bond length, bond angle, and torsion angle are reported in a local coordinate system in which one bond lies on an axis and an adjacent bond lies in the plane of two axes or is projected onto perpendicular planes for linear and out‐of‐plane bending motion. Second, a simple rotation transforms these derivatives to the appropriate orientation in the space‐fixed molecular coordinate system. Functions of the internal coordinates are invariant with respect to translation and rotation. The translational invariance and the symmetry of the second derivatives for a system with L atoms are used to select L‐1‐ and L(L‐1)/2‐independent first and second derivatives, respectively, of which approximately half of the latter vanish in the local coordinate system. The rotational invariance permits the transformation of the simplified derivatives in the local coordinate system to any orientation in space. The approach outlined in this article simplifies the formulas by expressing them in a local coordinate system, identifies the most convenient independent elements to compute, from which the dependent ones are calculated, and defines a transformation to the space‐fixed molecular coordinate system.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/jcc.540100107</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 1989-01, Vol.10 (1), p.63-76
issn 0192-8651
1096-987X
language eng
recordid cdi_crossref_primary_10_1002_jcc_540100107
source Wiley Online Library All Journals
title First and second derivative matrix elements for the stretching, bending, and torsional energy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T05%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20and%20second%20derivative%20matrix%20elements%20for%20the%20stretching,%20bending,%20and%20torsional%20energy&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Miller,%20Kenneth%20J.&rft.date=1989-01&rft.volume=10&rft.issue=1&rft.spage=63&rft.epage=76&rft.pages=63-76&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.540100107&rft_dat=%3Cistex_cross%3Eark_67375_WNG_M79H5BCK_8%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true