Determination of reactivity by MO theory. 27. Molecular orbital study of the gas-phase decarboxylation of but-3-enoic acid
The MINDO/3 calculations were performed on the potential energy profile involved in the equilibrium \documentclass{article}\pagestyle{empty}\begin{document}$$ \begin{array}{l} {\rm crotonic acid \rightleftharpoons isocrotonic acid \rightleftharpoons but-3-enoic acid} \\ {\rm (III)\,\,\,\,\,\,\,\,\,\...
Gespeichert in:
Veröffentlicht in: | Journal of computational chemistry 1984-06, Vol.5 (3), p.217-224 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 224 |
---|---|
container_issue | 3 |
container_start_page | 217 |
container_title | Journal of computational chemistry |
container_volume | 5 |
creator | Lee, Ikchoon Cho, Jeoung Ki Lee, Bon-Su |
description | The MINDO/3 calculations were performed on the potential energy profile involved in the equilibrium
\documentclass{article}\pagestyle{empty}\begin{document}$$ \begin{array}{l} {\rm crotonic acid \rightleftharpoons isocrotonic acid \rightleftharpoons but-3-enoic acid} \\ {\rm (III)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(II)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(I)} \\ {\rm } \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\to {\rm propene + CO}_{\rm 2} \\ \end{array} $$\end{document}
Optimized structures of stable molecules and transition states have been determined; thermodynamic stabilities of pure acids and barriers indicated that the equilibrium can be set up from any acids. It was argued that direct decarboxylation is only conceivable from (I), since in this process a 1, 5‐hydrogen shift is involved, whereas a higher barrier process of 1, 3‐hydrogen shift is required in direct decarboxylations from other acids. Direct interconversion of (I) and (III) was found to be unfavorable due to a high barrier involved. |
doi_str_mv | 10.1002/jcc.540050302 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jcc_540050302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JCC540050302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3232-d1cde76f7c605faa8ae267d63f9e70149ec08b7324acd477241700903b3fc2b43</originalsourceid><addsrcrecordid>eNp9kE9PwjAYhxujiYgevfcLFN-228qOZgho-HNB8dZ0XSfFwUhblPnphUCIJ0_v5Xl-b_IgdE-hQwHYw1LrThwBxMCBXaAWhTQhaVe8X6IW0JSRbhLTa3Tj_RIAeJxELfTTM8G4lV2rYOs1rkvsjNLBftnQ4LzB4ykOC1O7poOZ6OBxXRm9rZTDtcttUBX2YVs0B2-P4Q_lyWahvMGF0crl9a6pzsP5NhBOzLq2Gitti1t0VarKm7vTbaPX_tMsG5LRdPCcPY6I5owzUlBdGJGUQicQl0p1lWGJKBJepkYAjVKjoZsLziKli0gIFlEBkALPealZHvE2Isdd7WrvnSnlxtmVco2kIA_h5D6cPIfb8-LIf9vKNP_D8iXL_pqnT9YHszubyn3KRHARy_lkIPvZcNKbsbl84785J4Es</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Determination of reactivity by MO theory. 27. Molecular orbital study of the gas-phase decarboxylation of but-3-enoic acid</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Lee, Ikchoon ; Cho, Jeoung Ki ; Lee, Bon-Su</creator><creatorcontrib>Lee, Ikchoon ; Cho, Jeoung Ki ; Lee, Bon-Su</creatorcontrib><description>The MINDO/3 calculations were performed on the potential energy profile involved in the equilibrium
\documentclass{article}\pagestyle{empty}\begin{document}$$ \begin{array}{l} {\rm crotonic acid \rightleftharpoons isocrotonic acid \rightleftharpoons but-3-enoic acid} \\ {\rm (III)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(II)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(I)} \\ {\rm } \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\to {\rm propene + CO}_{\rm 2} \\ \end{array} $$\end{document}
Optimized structures of stable molecules and transition states have been determined; thermodynamic stabilities of pure acids and barriers indicated that the equilibrium can be set up from any acids. It was argued that direct decarboxylation is only conceivable from (I), since in this process a 1, 5‐hydrogen shift is involved, whereas a higher barrier process of 1, 3‐hydrogen shift is required in direct decarboxylations from other acids. Direct interconversion of (I) and (III) was found to be unfavorable due to a high barrier involved.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.540050302</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><ispartof>Journal of computational chemistry, 1984-06, Vol.5 (3), p.217-224</ispartof><rights>Copyright © 1984 John Wiley & Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3232-d1cde76f7c605faa8ae267d63f9e70149ec08b7324acd477241700903b3fc2b43</citedby><cites>FETCH-LOGICAL-c3232-d1cde76f7c605faa8ae267d63f9e70149ec08b7324acd477241700903b3fc2b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.540050302$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.540050302$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Lee, Ikchoon</creatorcontrib><creatorcontrib>Cho, Jeoung Ki</creatorcontrib><creatorcontrib>Lee, Bon-Su</creatorcontrib><title>Determination of reactivity by MO theory. 27. Molecular orbital study of the gas-phase decarboxylation of but-3-enoic acid</title><title>Journal of computational chemistry</title><addtitle>J. Comput. Chem</addtitle><description>The MINDO/3 calculations were performed on the potential energy profile involved in the equilibrium
\documentclass{article}\pagestyle{empty}\begin{document}$$ \begin{array}{l} {\rm crotonic acid \rightleftharpoons isocrotonic acid \rightleftharpoons but-3-enoic acid} \\ {\rm (III)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(II)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(I)} \\ {\rm } \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\to {\rm propene + CO}_{\rm 2} \\ \end{array} $$\end{document}
Optimized structures of stable molecules and transition states have been determined; thermodynamic stabilities of pure acids and barriers indicated that the equilibrium can be set up from any acids. It was argued that direct decarboxylation is only conceivable from (I), since in this process a 1, 5‐hydrogen shift is involved, whereas a higher barrier process of 1, 3‐hydrogen shift is required in direct decarboxylations from other acids. Direct interconversion of (I) and (III) was found to be unfavorable due to a high barrier involved.</description><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwjAYhxujiYgevfcLFN-228qOZgho-HNB8dZ0XSfFwUhblPnphUCIJ0_v5Xl-b_IgdE-hQwHYw1LrThwBxMCBXaAWhTQhaVe8X6IW0JSRbhLTa3Tj_RIAeJxELfTTM8G4lV2rYOs1rkvsjNLBftnQ4LzB4ykOC1O7poOZ6OBxXRm9rZTDtcttUBX2YVs0B2-P4Q_lyWahvMGF0crl9a6pzsP5NhBOzLq2Gitti1t0VarKm7vTbaPX_tMsG5LRdPCcPY6I5owzUlBdGJGUQicQl0p1lWGJKBJepkYAjVKjoZsLziKli0gIFlEBkALPealZHvE2Isdd7WrvnSnlxtmVco2kIA_h5D6cPIfb8-LIf9vKNP_D8iXL_pqnT9YHszubyn3KRHARy_lkIPvZcNKbsbl84785J4Es</recordid><startdate>198406</startdate><enddate>198406</enddate><creator>Lee, Ikchoon</creator><creator>Cho, Jeoung Ki</creator><creator>Lee, Bon-Su</creator><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198406</creationdate><title>Determination of reactivity by MO theory. 27. Molecular orbital study of the gas-phase decarboxylation of but-3-enoic acid</title><author>Lee, Ikchoon ; Cho, Jeoung Ki ; Lee, Bon-Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3232-d1cde76f7c605faa8ae267d63f9e70149ec08b7324acd477241700903b3fc2b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Ikchoon</creatorcontrib><creatorcontrib>Cho, Jeoung Ki</creatorcontrib><creatorcontrib>Lee, Bon-Su</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Ikchoon</au><au>Cho, Jeoung Ki</au><au>Lee, Bon-Su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of reactivity by MO theory. 27. Molecular orbital study of the gas-phase decarboxylation of but-3-enoic acid</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J. Comput. Chem</addtitle><date>1984-06</date><risdate>1984</risdate><volume>5</volume><issue>3</issue><spage>217</spage><epage>224</epage><pages>217-224</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>The MINDO/3 calculations were performed on the potential energy profile involved in the equilibrium
\documentclass{article}\pagestyle{empty}\begin{document}$$ \begin{array}{l} {\rm crotonic acid \rightleftharpoons isocrotonic acid \rightleftharpoons but-3-enoic acid} \\ {\rm (III)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(II)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(I)} \\ {\rm } \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\to {\rm propene + CO}_{\rm 2} \\ \end{array} $$\end{document}
Optimized structures of stable molecules and transition states have been determined; thermodynamic stabilities of pure acids and barriers indicated that the equilibrium can be set up from any acids. It was argued that direct decarboxylation is only conceivable from (I), since in this process a 1, 5‐hydrogen shift is involved, whereas a higher barrier process of 1, 3‐hydrogen shift is required in direct decarboxylations from other acids. Direct interconversion of (I) and (III) was found to be unfavorable due to a high barrier involved.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/jcc.540050302</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0192-8651 |
ispartof | Journal of computational chemistry, 1984-06, Vol.5 (3), p.217-224 |
issn | 0192-8651 1096-987X |
language | eng |
recordid | cdi_crossref_primary_10_1002_jcc_540050302 |
source | Wiley Online Library - AutoHoldings Journals |
title | Determination of reactivity by MO theory. 27. Molecular orbital study of the gas-phase decarboxylation of but-3-enoic acid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20reactivity%20by%20MO%20theory.%2027.%20Molecular%20orbital%20study%20of%20the%20gas-phase%20decarboxylation%20of%20but-3-enoic%20acid&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Lee,%20Ikchoon&rft.date=1984-06&rft.volume=5&rft.issue=3&rft.spage=217&rft.epage=224&rft.pages=217-224&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.540050302&rft_dat=%3Cwiley_cross%3EJCC540050302%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |