Determination of reactivity by MO theory. 27. Molecular orbital study of the gas-phase decarboxylation of but-3-enoic acid

The MINDO/3 calculations were performed on the potential energy profile involved in the equilibrium \documentclass{article}\pagestyle{empty}\begin{document}$$ \begin{array}{l} {\rm crotonic acid \rightleftharpoons isocrotonic acid \rightleftharpoons but-3-enoic acid} \\ {\rm (III)\,\,\,\,\,\,\,\,\,\...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 1984-06, Vol.5 (3), p.217-224
Hauptverfasser: Lee, Ikchoon, Cho, Jeoung Ki, Lee, Bon-Su
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 224
container_issue 3
container_start_page 217
container_title Journal of computational chemistry
container_volume 5
creator Lee, Ikchoon
Cho, Jeoung Ki
Lee, Bon-Su
description The MINDO/3 calculations were performed on the potential energy profile involved in the equilibrium \documentclass{article}\pagestyle{empty}\begin{document}$$ \begin{array}{l} {\rm crotonic acid \rightleftharpoons isocrotonic acid \rightleftharpoons but-3-enoic acid} \\ {\rm (III)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(II)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(I)} \\ {\rm } \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\to {\rm propene + CO}_{\rm 2} \\ \end{array} $$\end{document} Optimized structures of stable molecules and transition states have been determined; thermodynamic stabilities of pure acids and barriers indicated that the equilibrium can be set up from any acids. It was argued that direct decarboxylation is only conceivable from (I), since in this process a 1, 5‐hydrogen shift is involved, whereas a higher barrier process of 1, 3‐hydrogen shift is required in direct decarboxylations from other acids. Direct interconversion of (I) and (III) was found to be unfavorable due to a high barrier involved.
doi_str_mv 10.1002/jcc.540050302
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jcc_540050302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JCC540050302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3232-d1cde76f7c605faa8ae267d63f9e70149ec08b7324acd477241700903b3fc2b43</originalsourceid><addsrcrecordid>eNp9kE9PwjAYhxujiYgevfcLFN-228qOZgho-HNB8dZ0XSfFwUhblPnphUCIJ0_v5Xl-b_IgdE-hQwHYw1LrThwBxMCBXaAWhTQhaVe8X6IW0JSRbhLTa3Tj_RIAeJxELfTTM8G4lV2rYOs1rkvsjNLBftnQ4LzB4ykOC1O7poOZ6OBxXRm9rZTDtcttUBX2YVs0B2-P4Q_lyWahvMGF0crl9a6pzsP5NhBOzLq2Gitti1t0VarKm7vTbaPX_tMsG5LRdPCcPY6I5owzUlBdGJGUQicQl0p1lWGJKBJepkYAjVKjoZsLziKli0gIFlEBkALPealZHvE2Isdd7WrvnSnlxtmVco2kIA_h5D6cPIfb8-LIf9vKNP_D8iXL_pqnT9YHszubyn3KRHARy_lkIPvZcNKbsbl84785J4Es</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Determination of reactivity by MO theory. 27. Molecular orbital study of the gas-phase decarboxylation of but-3-enoic acid</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Lee, Ikchoon ; Cho, Jeoung Ki ; Lee, Bon-Su</creator><creatorcontrib>Lee, Ikchoon ; Cho, Jeoung Ki ; Lee, Bon-Su</creatorcontrib><description>The MINDO/3 calculations were performed on the potential energy profile involved in the equilibrium \documentclass{article}\pagestyle{empty}\begin{document}$$ \begin{array}{l} {\rm crotonic acid \rightleftharpoons isocrotonic acid \rightleftharpoons but-3-enoic acid} \\ {\rm (III)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(II)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(I)} \\ {\rm } \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\to {\rm propene + CO}_{\rm 2} \\ \end{array} $$\end{document} Optimized structures of stable molecules and transition states have been determined; thermodynamic stabilities of pure acids and barriers indicated that the equilibrium can be set up from any acids. It was argued that direct decarboxylation is only conceivable from (I), since in this process a 1, 5‐hydrogen shift is involved, whereas a higher barrier process of 1, 3‐hydrogen shift is required in direct decarboxylations from other acids. Direct interconversion of (I) and (III) was found to be unfavorable due to a high barrier involved.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.540050302</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><ispartof>Journal of computational chemistry, 1984-06, Vol.5 (3), p.217-224</ispartof><rights>Copyright © 1984 John Wiley &amp; Sons, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3232-d1cde76f7c605faa8ae267d63f9e70149ec08b7324acd477241700903b3fc2b43</citedby><cites>FETCH-LOGICAL-c3232-d1cde76f7c605faa8ae267d63f9e70149ec08b7324acd477241700903b3fc2b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.540050302$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.540050302$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Lee, Ikchoon</creatorcontrib><creatorcontrib>Cho, Jeoung Ki</creatorcontrib><creatorcontrib>Lee, Bon-Su</creatorcontrib><title>Determination of reactivity by MO theory. 27. Molecular orbital study of the gas-phase decarboxylation of but-3-enoic acid</title><title>Journal of computational chemistry</title><addtitle>J. Comput. Chem</addtitle><description>The MINDO/3 calculations were performed on the potential energy profile involved in the equilibrium \documentclass{article}\pagestyle{empty}\begin{document}$$ \begin{array}{l} {\rm crotonic acid \rightleftharpoons isocrotonic acid \rightleftharpoons but-3-enoic acid} \\ {\rm (III)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(II)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(I)} \\ {\rm } \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\to {\rm propene + CO}_{\rm 2} \\ \end{array} $$\end{document} Optimized structures of stable molecules and transition states have been determined; thermodynamic stabilities of pure acids and barriers indicated that the equilibrium can be set up from any acids. It was argued that direct decarboxylation is only conceivable from (I), since in this process a 1, 5‐hydrogen shift is involved, whereas a higher barrier process of 1, 3‐hydrogen shift is required in direct decarboxylations from other acids. Direct interconversion of (I) and (III) was found to be unfavorable due to a high barrier involved.</description><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PwjAYhxujiYgevfcLFN-228qOZgho-HNB8dZ0XSfFwUhblPnphUCIJ0_v5Xl-b_IgdE-hQwHYw1LrThwBxMCBXaAWhTQhaVe8X6IW0JSRbhLTa3Tj_RIAeJxELfTTM8G4lV2rYOs1rkvsjNLBftnQ4LzB4ykOC1O7poOZ6OBxXRm9rZTDtcttUBX2YVs0B2-P4Q_lyWahvMGF0crl9a6pzsP5NhBOzLq2Gitti1t0VarKm7vTbaPX_tMsG5LRdPCcPY6I5owzUlBdGJGUQicQl0p1lWGJKBJepkYAjVKjoZsLziKli0gIFlEBkALPealZHvE2Isdd7WrvnSnlxtmVco2kIA_h5D6cPIfb8-LIf9vKNP_D8iXL_pqnT9YHszubyn3KRHARy_lkIPvZcNKbsbl84785J4Es</recordid><startdate>198406</startdate><enddate>198406</enddate><creator>Lee, Ikchoon</creator><creator>Cho, Jeoung Ki</creator><creator>Lee, Bon-Su</creator><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>198406</creationdate><title>Determination of reactivity by MO theory. 27. Molecular orbital study of the gas-phase decarboxylation of but-3-enoic acid</title><author>Lee, Ikchoon ; Cho, Jeoung Ki ; Lee, Bon-Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3232-d1cde76f7c605faa8ae267d63f9e70149ec08b7324acd477241700903b3fc2b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Ikchoon</creatorcontrib><creatorcontrib>Cho, Jeoung Ki</creatorcontrib><creatorcontrib>Lee, Bon-Su</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Ikchoon</au><au>Cho, Jeoung Ki</au><au>Lee, Bon-Su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of reactivity by MO theory. 27. Molecular orbital study of the gas-phase decarboxylation of but-3-enoic acid</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J. Comput. Chem</addtitle><date>1984-06</date><risdate>1984</risdate><volume>5</volume><issue>3</issue><spage>217</spage><epage>224</epage><pages>217-224</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>The MINDO/3 calculations were performed on the potential energy profile involved in the equilibrium \documentclass{article}\pagestyle{empty}\begin{document}$$ \begin{array}{l} {\rm crotonic acid \rightleftharpoons isocrotonic acid \rightleftharpoons but-3-enoic acid} \\ {\rm (III)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(II)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(I)} \\ {\rm } \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\to {\rm propene + CO}_{\rm 2} \\ \end{array} $$\end{document} Optimized structures of stable molecules and transition states have been determined; thermodynamic stabilities of pure acids and barriers indicated that the equilibrium can be set up from any acids. It was argued that direct decarboxylation is only conceivable from (I), since in this process a 1, 5‐hydrogen shift is involved, whereas a higher barrier process of 1, 3‐hydrogen shift is required in direct decarboxylations from other acids. Direct interconversion of (I) and (III) was found to be unfavorable due to a high barrier involved.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/jcc.540050302</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 1984-06, Vol.5 (3), p.217-224
issn 0192-8651
1096-987X
language eng
recordid cdi_crossref_primary_10_1002_jcc_540050302
source Wiley Online Library - AutoHoldings Journals
title Determination of reactivity by MO theory. 27. Molecular orbital study of the gas-phase decarboxylation of but-3-enoic acid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20reactivity%20by%20MO%20theory.%2027.%20Molecular%20orbital%20study%20of%20the%20gas-phase%20decarboxylation%20of%20but-3-enoic%20acid&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Lee,%20Ikchoon&rft.date=1984-06&rft.volume=5&rft.issue=3&rft.spage=217&rft.epage=224&rft.pages=217-224&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.540050302&rft_dat=%3Cwiley_cross%3EJCC540050302%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true