Underlying mechanisms for LTF inactivation and its functional analysis in nasopharyngeal carcinoma cell lines

The lactoferrin (LTF) gene, located at 3p21.3, behaves like a tumor suppressor gene in diverse tumors. To elucidate the exact role of LTF in NPC, we first detected its expression level in seven NPC cell lines by semi‐quantitative reverse transcription‐polymerase chain reaction (RT‐PCR). The results...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular biochemistry 2011-07, Vol.112 (7), p.1832-1843
Hauptverfasser: Zhang, Hejun, Feng, Xiangling, Liu, Weidong, Jiang, Xingjun, Shan, Wenjiao, Huang, Chengan, Yi, Hongmei, Zhu, Bin, Zhou, Wen, Wang, Lei, Liu, Chunmei, Zhang, Lihua, Jia, Wenting, Huang, Wei, Li, Guifei, Shi, Jia, Wanggou, Siyi, Yao, Kaitai, Ren, Caiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1843
container_issue 7
container_start_page 1832
container_title Journal of cellular biochemistry
container_volume 112
creator Zhang, Hejun
Feng, Xiangling
Liu, Weidong
Jiang, Xingjun
Shan, Wenjiao
Huang, Chengan
Yi, Hongmei
Zhu, Bin
Zhou, Wen
Wang, Lei
Liu, Chunmei
Zhang, Lihua
Jia, Wenting
Huang, Wei
Li, Guifei
Shi, Jia
Wanggou, Siyi
Yao, Kaitai
Ren, Caiping
description The lactoferrin (LTF) gene, located at 3p21.3, behaves like a tumor suppressor gene in diverse tumors. To elucidate the exact role of LTF in NPC, we first detected its expression level in seven NPC cell lines by semi‐quantitative reverse transcription‐polymerase chain reaction (RT‐PCR). The results showed the mRNA level of LTF was nearly undetectable in all the seven NPC cell lines, while it could be detected in chronic nasopharyngitis tissues. Subsequently, we used methylation‐specific PCR (MSP), microsatellite assay, PCR‐single‐strand conformation polymorphism (PCR‐SSCP) and sequencing methods to examine the promoter methylation, loss of heterozygosity (LOH) and gene mutation of LTF in NPC cell lines respectively. Consequently, we found that 100% (7 of 7) of NPC cell lines were methylated in LTF promoter, only one cell line (14%, 1 of 7) had LOH and gene mutation of LTF, respectively, while LTF exhibited re‐expression in all cell lines after 5‐aza‐dC treatment, indicating promoter methylation should be the key mechanism causing LTF downregulation in NPC cell lines. Furthermore, patched methylation assay confirmed that promoter methylation could down‐regulate LTF gene expression in NPC cells. Finally, we investigated the function of LTF in NPC cell lines by gene transfection. Restoration of LTF expression in NPC cells resulted in blockage of cell cycle progression, significant inhibition of cell growth and a reduced colony‐formation capacity in vitro and obviously weaker tumor formation potential in vivo. In conclusion, our data indicate LTF may participate in NPC carcinogenesis as a negative effector, that is, a tumor suppressor gene. J. Cell. Biochem. 112: 1832–1843, 2011. © 2011 Wiley‐Liss, Inc.
doi_str_mv 10.1002/jcb.23101
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jcb_23101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JCB23101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3621-2cef4efbbaaffa1a4438b2544633dae405dfc0e70386e485859bbb963eb60cbc3</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EouVx4A8gXzmkXcdO0hyhUB6qioCiHq2147QuiVPF5dF_j6HAjdNKM9-MVkPICYMeA4j7S616MWfAdkiXQZ5FIhVil3Qh4xAFI-6QA--XAJDnPN4nnZgJgCTjXVI_u8K01ca6Oa2NXqCzvva0bFo6no6odajX9g3XtnEUXUHtOpivTn8JWAUJq423PoDUoW9WC2w3bm6CpbHV1jU1Um2qilbWGX9E9kqsvDn-uYfkeXQ1Hd5E4_vr2-H5ONI8jVkUa1MKUyqFWJbIUAg-UHEiRMp5gUZAUpQaTAZ8kBoxSAZJrpTKU25UClppfkjOtr26bbxvTSlXra3Da5KB_JpMhsnk92SBPd2yq1dVm-KP_N0oAP0t8G4rs_m_Sd4NL34ro23C-rX5-Etg-yLTjGeJnE2u5eXsgT2OphP5xD8B6UeHZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Underlying mechanisms for LTF inactivation and its functional analysis in nasopharyngeal carcinoma cell lines</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Zhang, Hejun ; Feng, Xiangling ; Liu, Weidong ; Jiang, Xingjun ; Shan, Wenjiao ; Huang, Chengan ; Yi, Hongmei ; Zhu, Bin ; Zhou, Wen ; Wang, Lei ; Liu, Chunmei ; Zhang, Lihua ; Jia, Wenting ; Huang, Wei ; Li, Guifei ; Shi, Jia ; Wanggou, Siyi ; Yao, Kaitai ; Ren, Caiping</creator><creatorcontrib>Zhang, Hejun ; Feng, Xiangling ; Liu, Weidong ; Jiang, Xingjun ; Shan, Wenjiao ; Huang, Chengan ; Yi, Hongmei ; Zhu, Bin ; Zhou, Wen ; Wang, Lei ; Liu, Chunmei ; Zhang, Lihua ; Jia, Wenting ; Huang, Wei ; Li, Guifei ; Shi, Jia ; Wanggou, Siyi ; Yao, Kaitai ; Ren, Caiping</creatorcontrib><description>The lactoferrin (LTF) gene, located at 3p21.3, behaves like a tumor suppressor gene in diverse tumors. To elucidate the exact role of LTF in NPC, we first detected its expression level in seven NPC cell lines by semi‐quantitative reverse transcription‐polymerase chain reaction (RT‐PCR). The results showed the mRNA level of LTF was nearly undetectable in all the seven NPC cell lines, while it could be detected in chronic nasopharyngitis tissues. Subsequently, we used methylation‐specific PCR (MSP), microsatellite assay, PCR‐single‐strand conformation polymorphism (PCR‐SSCP) and sequencing methods to examine the promoter methylation, loss of heterozygosity (LOH) and gene mutation of LTF in NPC cell lines respectively. Consequently, we found that 100% (7 of 7) of NPC cell lines were methylated in LTF promoter, only one cell line (14%, 1 of 7) had LOH and gene mutation of LTF, respectively, while LTF exhibited re‐expression in all cell lines after 5‐aza‐dC treatment, indicating promoter methylation should be the key mechanism causing LTF downregulation in NPC cell lines. Furthermore, patched methylation assay confirmed that promoter methylation could down‐regulate LTF gene expression in NPC cells. Finally, we investigated the function of LTF in NPC cell lines by gene transfection. Restoration of LTF expression in NPC cells resulted in blockage of cell cycle progression, significant inhibition of cell growth and a reduced colony‐formation capacity in vitro and obviously weaker tumor formation potential in vivo. In conclusion, our data indicate LTF may participate in NPC carcinogenesis as a negative effector, that is, a tumor suppressor gene. J. Cell. Biochem. 112: 1832–1843, 2011. © 2011 Wiley‐Liss, Inc.</description><identifier>ISSN: 0730-2312</identifier><identifier>EISSN: 1097-4644</identifier><identifier>DOI: 10.1002/jcb.23101</identifier><identifier>PMID: 21400573</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Base Sequence ; Carcinoma ; Cell Line, Tumor ; Cell Proliferation ; DNA Methylation ; DNA Mutational Analysis ; Female ; G1 Phase ; gene function ; gene mutation ; Humans ; hypermethylation ; inactivation ; lactoferrin ; Lactoferrin - genetics ; Lactoferrin - metabolism ; Loss of Heterozygosity ; Male ; Mice ; Mice, Nude ; Molecular Sequence Data ; Nasopharyngeal Carcinoma ; Nasopharyngeal Neoplasms - metabolism ; Neoplasm Transplantation ; Promoter Regions, Genetic ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Transcription, Genetic ; transfection ; Tumor Burden ; tumor suppressor gene</subject><ispartof>Journal of cellular biochemistry, 2011-07, Vol.112 (7), p.1832-1843</ispartof><rights>Copyright © 2011 Wiley‐Liss, Inc.</rights><rights>Copyright © 2011 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3621-2cef4efbbaaffa1a4438b2544633dae405dfc0e70386e485859bbb963eb60cbc3</citedby><cites>FETCH-LOGICAL-c3621-2cef4efbbaaffa1a4438b2544633dae405dfc0e70386e485859bbb963eb60cbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcb.23101$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcb.23101$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21400573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Hejun</creatorcontrib><creatorcontrib>Feng, Xiangling</creatorcontrib><creatorcontrib>Liu, Weidong</creatorcontrib><creatorcontrib>Jiang, Xingjun</creatorcontrib><creatorcontrib>Shan, Wenjiao</creatorcontrib><creatorcontrib>Huang, Chengan</creatorcontrib><creatorcontrib>Yi, Hongmei</creatorcontrib><creatorcontrib>Zhu, Bin</creatorcontrib><creatorcontrib>Zhou, Wen</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Liu, Chunmei</creatorcontrib><creatorcontrib>Zhang, Lihua</creatorcontrib><creatorcontrib>Jia, Wenting</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Li, Guifei</creatorcontrib><creatorcontrib>Shi, Jia</creatorcontrib><creatorcontrib>Wanggou, Siyi</creatorcontrib><creatorcontrib>Yao, Kaitai</creatorcontrib><creatorcontrib>Ren, Caiping</creatorcontrib><title>Underlying mechanisms for LTF inactivation and its functional analysis in nasopharyngeal carcinoma cell lines</title><title>Journal of cellular biochemistry</title><addtitle>J. Cell. Biochem</addtitle><description>The lactoferrin (LTF) gene, located at 3p21.3, behaves like a tumor suppressor gene in diverse tumors. To elucidate the exact role of LTF in NPC, we first detected its expression level in seven NPC cell lines by semi‐quantitative reverse transcription‐polymerase chain reaction (RT‐PCR). The results showed the mRNA level of LTF was nearly undetectable in all the seven NPC cell lines, while it could be detected in chronic nasopharyngitis tissues. Subsequently, we used methylation‐specific PCR (MSP), microsatellite assay, PCR‐single‐strand conformation polymorphism (PCR‐SSCP) and sequencing methods to examine the promoter methylation, loss of heterozygosity (LOH) and gene mutation of LTF in NPC cell lines respectively. Consequently, we found that 100% (7 of 7) of NPC cell lines were methylated in LTF promoter, only one cell line (14%, 1 of 7) had LOH and gene mutation of LTF, respectively, while LTF exhibited re‐expression in all cell lines after 5‐aza‐dC treatment, indicating promoter methylation should be the key mechanism causing LTF downregulation in NPC cell lines. Furthermore, patched methylation assay confirmed that promoter methylation could down‐regulate LTF gene expression in NPC cells. Finally, we investigated the function of LTF in NPC cell lines by gene transfection. Restoration of LTF expression in NPC cells resulted in blockage of cell cycle progression, significant inhibition of cell growth and a reduced colony‐formation capacity in vitro and obviously weaker tumor formation potential in vivo. In conclusion, our data indicate LTF may participate in NPC carcinogenesis as a negative effector, that is, a tumor suppressor gene. J. Cell. Biochem. 112: 1832–1843, 2011. © 2011 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>Base Sequence</subject><subject>Carcinoma</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>DNA Methylation</subject><subject>DNA Mutational Analysis</subject><subject>Female</subject><subject>G1 Phase</subject><subject>gene function</subject><subject>gene mutation</subject><subject>Humans</subject><subject>hypermethylation</subject><subject>inactivation</subject><subject>lactoferrin</subject><subject>Lactoferrin - genetics</subject><subject>Lactoferrin - metabolism</subject><subject>Loss of Heterozygosity</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Molecular Sequence Data</subject><subject>Nasopharyngeal Carcinoma</subject><subject>Nasopharyngeal Neoplasms - metabolism</subject><subject>Neoplasm Transplantation</subject><subject>Promoter Regions, Genetic</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Transcription, Genetic</subject><subject>transfection</subject><subject>Tumor Burden</subject><subject>tumor suppressor gene</subject><issn>0730-2312</issn><issn>1097-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtPwzAQhC0EouVx4A8gXzmkXcdO0hyhUB6qioCiHq2147QuiVPF5dF_j6HAjdNKM9-MVkPICYMeA4j7S616MWfAdkiXQZ5FIhVil3Qh4xAFI-6QA--XAJDnPN4nnZgJgCTjXVI_u8K01ca6Oa2NXqCzvva0bFo6no6odajX9g3XtnEUXUHtOpivTn8JWAUJq423PoDUoW9WC2w3bm6CpbHV1jU1Um2qilbWGX9E9kqsvDn-uYfkeXQ1Hd5E4_vr2-H5ONI8jVkUa1MKUyqFWJbIUAg-UHEiRMp5gUZAUpQaTAZ8kBoxSAZJrpTKU25UClppfkjOtr26bbxvTSlXra3Da5KB_JpMhsnk92SBPd2yq1dVm-KP_N0oAP0t8G4rs_m_Sd4NL34ro23C-rX5-Etg-yLTjGeJnE2u5eXsgT2OphP5xD8B6UeHZg</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Zhang, Hejun</creator><creator>Feng, Xiangling</creator><creator>Liu, Weidong</creator><creator>Jiang, Xingjun</creator><creator>Shan, Wenjiao</creator><creator>Huang, Chengan</creator><creator>Yi, Hongmei</creator><creator>Zhu, Bin</creator><creator>Zhou, Wen</creator><creator>Wang, Lei</creator><creator>Liu, Chunmei</creator><creator>Zhang, Lihua</creator><creator>Jia, Wenting</creator><creator>Huang, Wei</creator><creator>Li, Guifei</creator><creator>Shi, Jia</creator><creator>Wanggou, Siyi</creator><creator>Yao, Kaitai</creator><creator>Ren, Caiping</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201107</creationdate><title>Underlying mechanisms for LTF inactivation and its functional analysis in nasopharyngeal carcinoma cell lines</title><author>Zhang, Hejun ; Feng, Xiangling ; Liu, Weidong ; Jiang, Xingjun ; Shan, Wenjiao ; Huang, Chengan ; Yi, Hongmei ; Zhu, Bin ; Zhou, Wen ; Wang, Lei ; Liu, Chunmei ; Zhang, Lihua ; Jia, Wenting ; Huang, Wei ; Li, Guifei ; Shi, Jia ; Wanggou, Siyi ; Yao, Kaitai ; Ren, Caiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3621-2cef4efbbaaffa1a4438b2544633dae405dfc0e70386e485859bbb963eb60cbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Base Sequence</topic><topic>Carcinoma</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>DNA Methylation</topic><topic>DNA Mutational Analysis</topic><topic>Female</topic><topic>G1 Phase</topic><topic>gene function</topic><topic>gene mutation</topic><topic>Humans</topic><topic>hypermethylation</topic><topic>inactivation</topic><topic>lactoferrin</topic><topic>Lactoferrin - genetics</topic><topic>Lactoferrin - metabolism</topic><topic>Loss of Heterozygosity</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Molecular Sequence Data</topic><topic>Nasopharyngeal Carcinoma</topic><topic>Nasopharyngeal Neoplasms - metabolism</topic><topic>Neoplasm Transplantation</topic><topic>Promoter Regions, Genetic</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Transcription, Genetic</topic><topic>transfection</topic><topic>Tumor Burden</topic><topic>tumor suppressor gene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hejun</creatorcontrib><creatorcontrib>Feng, Xiangling</creatorcontrib><creatorcontrib>Liu, Weidong</creatorcontrib><creatorcontrib>Jiang, Xingjun</creatorcontrib><creatorcontrib>Shan, Wenjiao</creatorcontrib><creatorcontrib>Huang, Chengan</creatorcontrib><creatorcontrib>Yi, Hongmei</creatorcontrib><creatorcontrib>Zhu, Bin</creatorcontrib><creatorcontrib>Zhou, Wen</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Liu, Chunmei</creatorcontrib><creatorcontrib>Zhang, Lihua</creatorcontrib><creatorcontrib>Jia, Wenting</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Li, Guifei</creatorcontrib><creatorcontrib>Shi, Jia</creatorcontrib><creatorcontrib>Wanggou, Siyi</creatorcontrib><creatorcontrib>Yao, Kaitai</creatorcontrib><creatorcontrib>Ren, Caiping</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hejun</au><au>Feng, Xiangling</au><au>Liu, Weidong</au><au>Jiang, Xingjun</au><au>Shan, Wenjiao</au><au>Huang, Chengan</au><au>Yi, Hongmei</au><au>Zhu, Bin</au><au>Zhou, Wen</au><au>Wang, Lei</au><au>Liu, Chunmei</au><au>Zhang, Lihua</au><au>Jia, Wenting</au><au>Huang, Wei</au><au>Li, Guifei</au><au>Shi, Jia</au><au>Wanggou, Siyi</au><au>Yao, Kaitai</au><au>Ren, Caiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Underlying mechanisms for LTF inactivation and its functional analysis in nasopharyngeal carcinoma cell lines</atitle><jtitle>Journal of cellular biochemistry</jtitle><addtitle>J. Cell. Biochem</addtitle><date>2011-07</date><risdate>2011</risdate><volume>112</volume><issue>7</issue><spage>1832</spage><epage>1843</epage><pages>1832-1843</pages><issn>0730-2312</issn><eissn>1097-4644</eissn><abstract>The lactoferrin (LTF) gene, located at 3p21.3, behaves like a tumor suppressor gene in diverse tumors. To elucidate the exact role of LTF in NPC, we first detected its expression level in seven NPC cell lines by semi‐quantitative reverse transcription‐polymerase chain reaction (RT‐PCR). The results showed the mRNA level of LTF was nearly undetectable in all the seven NPC cell lines, while it could be detected in chronic nasopharyngitis tissues. Subsequently, we used methylation‐specific PCR (MSP), microsatellite assay, PCR‐single‐strand conformation polymorphism (PCR‐SSCP) and sequencing methods to examine the promoter methylation, loss of heterozygosity (LOH) and gene mutation of LTF in NPC cell lines respectively. Consequently, we found that 100% (7 of 7) of NPC cell lines were methylated in LTF promoter, only one cell line (14%, 1 of 7) had LOH and gene mutation of LTF, respectively, while LTF exhibited re‐expression in all cell lines after 5‐aza‐dC treatment, indicating promoter methylation should be the key mechanism causing LTF downregulation in NPC cell lines. Furthermore, patched methylation assay confirmed that promoter methylation could down‐regulate LTF gene expression in NPC cells. Finally, we investigated the function of LTF in NPC cell lines by gene transfection. Restoration of LTF expression in NPC cells resulted in blockage of cell cycle progression, significant inhibition of cell growth and a reduced colony‐formation capacity in vitro and obviously weaker tumor formation potential in vivo. In conclusion, our data indicate LTF may participate in NPC carcinogenesis as a negative effector, that is, a tumor suppressor gene. J. Cell. Biochem. 112: 1832–1843, 2011. © 2011 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21400573</pmid><doi>10.1002/jcb.23101</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0730-2312
ispartof Journal of cellular biochemistry, 2011-07, Vol.112 (7), p.1832-1843
issn 0730-2312
1097-4644
language eng
recordid cdi_crossref_primary_10_1002_jcb_23101
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects Animals
Base Sequence
Carcinoma
Cell Line, Tumor
Cell Proliferation
DNA Methylation
DNA Mutational Analysis
Female
G1 Phase
gene function
gene mutation
Humans
hypermethylation
inactivation
lactoferrin
Lactoferrin - genetics
Lactoferrin - metabolism
Loss of Heterozygosity
Male
Mice
Mice, Nude
Molecular Sequence Data
Nasopharyngeal Carcinoma
Nasopharyngeal Neoplasms - metabolism
Neoplasm Transplantation
Promoter Regions, Genetic
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Transcription, Genetic
transfection
Tumor Burden
tumor suppressor gene
title Underlying mechanisms for LTF inactivation and its functional analysis in nasopharyngeal carcinoma cell lines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A31%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Underlying%20mechanisms%20for%20LTF%20inactivation%20and%20its%20functional%20analysis%20in%20nasopharyngeal%20carcinoma%20cell%20lines&rft.jtitle=Journal%20of%20cellular%20biochemistry&rft.au=Zhang,%20Hejun&rft.date=2011-07&rft.volume=112&rft.issue=7&rft.spage=1832&rft.epage=1843&rft.pages=1832-1843&rft.issn=0730-2312&rft.eissn=1097-4644&rft_id=info:doi/10.1002/jcb.23101&rft_dat=%3Cwiley_cross%3EJCB23101%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21400573&rfr_iscdi=true