Underlying mechanisms for LTF inactivation and its functional analysis in nasopharyngeal carcinoma cell lines
The lactoferrin (LTF) gene, located at 3p21.3, behaves like a tumor suppressor gene in diverse tumors. To elucidate the exact role of LTF in NPC, we first detected its expression level in seven NPC cell lines by semi‐quantitative reverse transcription‐polymerase chain reaction (RT‐PCR). The results...
Gespeichert in:
Veröffentlicht in: | Journal of cellular biochemistry 2011-07, Vol.112 (7), p.1832-1843 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1843 |
---|---|
container_issue | 7 |
container_start_page | 1832 |
container_title | Journal of cellular biochemistry |
container_volume | 112 |
creator | Zhang, Hejun Feng, Xiangling Liu, Weidong Jiang, Xingjun Shan, Wenjiao Huang, Chengan Yi, Hongmei Zhu, Bin Zhou, Wen Wang, Lei Liu, Chunmei Zhang, Lihua Jia, Wenting Huang, Wei Li, Guifei Shi, Jia Wanggou, Siyi Yao, Kaitai Ren, Caiping |
description | The lactoferrin (LTF) gene, located at 3p21.3, behaves like a tumor suppressor gene in diverse tumors. To elucidate the exact role of LTF in NPC, we first detected its expression level in seven NPC cell lines by semi‐quantitative reverse transcription‐polymerase chain reaction (RT‐PCR). The results showed the mRNA level of LTF was nearly undetectable in all the seven NPC cell lines, while it could be detected in chronic nasopharyngitis tissues. Subsequently, we used methylation‐specific PCR (MSP), microsatellite assay, PCR‐single‐strand conformation polymorphism (PCR‐SSCP) and sequencing methods to examine the promoter methylation, loss of heterozygosity (LOH) and gene mutation of LTF in NPC cell lines respectively. Consequently, we found that 100% (7 of 7) of NPC cell lines were methylated in LTF promoter, only one cell line (14%, 1 of 7) had LOH and gene mutation of LTF, respectively, while LTF exhibited re‐expression in all cell lines after 5‐aza‐dC treatment, indicating promoter methylation should be the key mechanism causing LTF downregulation in NPC cell lines. Furthermore, patched methylation assay confirmed that promoter methylation could down‐regulate LTF gene expression in NPC cells. Finally, we investigated the function of LTF in NPC cell lines by gene transfection. Restoration of LTF expression in NPC cells resulted in blockage of cell cycle progression, significant inhibition of cell growth and a reduced colony‐formation capacity in vitro and obviously weaker tumor formation potential in vivo. In conclusion, our data indicate LTF may participate in NPC carcinogenesis as a negative effector, that is, a tumor suppressor gene. J. Cell. Biochem. 112: 1832–1843, 2011. © 2011 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/jcb.23101 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jcb_23101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JCB23101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3621-2cef4efbbaaffa1a4438b2544633dae405dfc0e70386e485859bbb963eb60cbc3</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EouVx4A8gXzmkXcdO0hyhUB6qioCiHq2147QuiVPF5dF_j6HAjdNKM9-MVkPICYMeA4j7S616MWfAdkiXQZ5FIhVil3Qh4xAFI-6QA--XAJDnPN4nnZgJgCTjXVI_u8K01ca6Oa2NXqCzvva0bFo6no6odajX9g3XtnEUXUHtOpivTn8JWAUJq423PoDUoW9WC2w3bm6CpbHV1jU1Um2qilbWGX9E9kqsvDn-uYfkeXQ1Hd5E4_vr2-H5ONI8jVkUa1MKUyqFWJbIUAg-UHEiRMp5gUZAUpQaTAZ8kBoxSAZJrpTKU25UClppfkjOtr26bbxvTSlXra3Da5KB_JpMhsnk92SBPd2yq1dVm-KP_N0oAP0t8G4rs_m_Sd4NL34ro23C-rX5-Etg-yLTjGeJnE2u5eXsgT2OphP5xD8B6UeHZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Underlying mechanisms for LTF inactivation and its functional analysis in nasopharyngeal carcinoma cell lines</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Zhang, Hejun ; Feng, Xiangling ; Liu, Weidong ; Jiang, Xingjun ; Shan, Wenjiao ; Huang, Chengan ; Yi, Hongmei ; Zhu, Bin ; Zhou, Wen ; Wang, Lei ; Liu, Chunmei ; Zhang, Lihua ; Jia, Wenting ; Huang, Wei ; Li, Guifei ; Shi, Jia ; Wanggou, Siyi ; Yao, Kaitai ; Ren, Caiping</creator><creatorcontrib>Zhang, Hejun ; Feng, Xiangling ; Liu, Weidong ; Jiang, Xingjun ; Shan, Wenjiao ; Huang, Chengan ; Yi, Hongmei ; Zhu, Bin ; Zhou, Wen ; Wang, Lei ; Liu, Chunmei ; Zhang, Lihua ; Jia, Wenting ; Huang, Wei ; Li, Guifei ; Shi, Jia ; Wanggou, Siyi ; Yao, Kaitai ; Ren, Caiping</creatorcontrib><description>The lactoferrin (LTF) gene, located at 3p21.3, behaves like a tumor suppressor gene in diverse tumors. To elucidate the exact role of LTF in NPC, we first detected its expression level in seven NPC cell lines by semi‐quantitative reverse transcription‐polymerase chain reaction (RT‐PCR). The results showed the mRNA level of LTF was nearly undetectable in all the seven NPC cell lines, while it could be detected in chronic nasopharyngitis tissues. Subsequently, we used methylation‐specific PCR (MSP), microsatellite assay, PCR‐single‐strand conformation polymorphism (PCR‐SSCP) and sequencing methods to examine the promoter methylation, loss of heterozygosity (LOH) and gene mutation of LTF in NPC cell lines respectively. Consequently, we found that 100% (7 of 7) of NPC cell lines were methylated in LTF promoter, only one cell line (14%, 1 of 7) had LOH and gene mutation of LTF, respectively, while LTF exhibited re‐expression in all cell lines after 5‐aza‐dC treatment, indicating promoter methylation should be the key mechanism causing LTF downregulation in NPC cell lines. Furthermore, patched methylation assay confirmed that promoter methylation could down‐regulate LTF gene expression in NPC cells. Finally, we investigated the function of LTF in NPC cell lines by gene transfection. Restoration of LTF expression in NPC cells resulted in blockage of cell cycle progression, significant inhibition of cell growth and a reduced colony‐formation capacity in vitro and obviously weaker tumor formation potential in vivo. In conclusion, our data indicate LTF may participate in NPC carcinogenesis as a negative effector, that is, a tumor suppressor gene. J. Cell. Biochem. 112: 1832–1843, 2011. © 2011 Wiley‐Liss, Inc.</description><identifier>ISSN: 0730-2312</identifier><identifier>EISSN: 1097-4644</identifier><identifier>DOI: 10.1002/jcb.23101</identifier><identifier>PMID: 21400573</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; Base Sequence ; Carcinoma ; Cell Line, Tumor ; Cell Proliferation ; DNA Methylation ; DNA Mutational Analysis ; Female ; G1 Phase ; gene function ; gene mutation ; Humans ; hypermethylation ; inactivation ; lactoferrin ; Lactoferrin - genetics ; Lactoferrin - metabolism ; Loss of Heterozygosity ; Male ; Mice ; Mice, Nude ; Molecular Sequence Data ; Nasopharyngeal Carcinoma ; Nasopharyngeal Neoplasms - metabolism ; Neoplasm Transplantation ; Promoter Regions, Genetic ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Transcription, Genetic ; transfection ; Tumor Burden ; tumor suppressor gene</subject><ispartof>Journal of cellular biochemistry, 2011-07, Vol.112 (7), p.1832-1843</ispartof><rights>Copyright © 2011 Wiley‐Liss, Inc.</rights><rights>Copyright © 2011 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3621-2cef4efbbaaffa1a4438b2544633dae405dfc0e70386e485859bbb963eb60cbc3</citedby><cites>FETCH-LOGICAL-c3621-2cef4efbbaaffa1a4438b2544633dae405dfc0e70386e485859bbb963eb60cbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcb.23101$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcb.23101$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21400573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Hejun</creatorcontrib><creatorcontrib>Feng, Xiangling</creatorcontrib><creatorcontrib>Liu, Weidong</creatorcontrib><creatorcontrib>Jiang, Xingjun</creatorcontrib><creatorcontrib>Shan, Wenjiao</creatorcontrib><creatorcontrib>Huang, Chengan</creatorcontrib><creatorcontrib>Yi, Hongmei</creatorcontrib><creatorcontrib>Zhu, Bin</creatorcontrib><creatorcontrib>Zhou, Wen</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Liu, Chunmei</creatorcontrib><creatorcontrib>Zhang, Lihua</creatorcontrib><creatorcontrib>Jia, Wenting</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Li, Guifei</creatorcontrib><creatorcontrib>Shi, Jia</creatorcontrib><creatorcontrib>Wanggou, Siyi</creatorcontrib><creatorcontrib>Yao, Kaitai</creatorcontrib><creatorcontrib>Ren, Caiping</creatorcontrib><title>Underlying mechanisms for LTF inactivation and its functional analysis in nasopharyngeal carcinoma cell lines</title><title>Journal of cellular biochemistry</title><addtitle>J. Cell. Biochem</addtitle><description>The lactoferrin (LTF) gene, located at 3p21.3, behaves like a tumor suppressor gene in diverse tumors. To elucidate the exact role of LTF in NPC, we first detected its expression level in seven NPC cell lines by semi‐quantitative reverse transcription‐polymerase chain reaction (RT‐PCR). The results showed the mRNA level of LTF was nearly undetectable in all the seven NPC cell lines, while it could be detected in chronic nasopharyngitis tissues. Subsequently, we used methylation‐specific PCR (MSP), microsatellite assay, PCR‐single‐strand conformation polymorphism (PCR‐SSCP) and sequencing methods to examine the promoter methylation, loss of heterozygosity (LOH) and gene mutation of LTF in NPC cell lines respectively. Consequently, we found that 100% (7 of 7) of NPC cell lines were methylated in LTF promoter, only one cell line (14%, 1 of 7) had LOH and gene mutation of LTF, respectively, while LTF exhibited re‐expression in all cell lines after 5‐aza‐dC treatment, indicating promoter methylation should be the key mechanism causing LTF downregulation in NPC cell lines. Furthermore, patched methylation assay confirmed that promoter methylation could down‐regulate LTF gene expression in NPC cells. Finally, we investigated the function of LTF in NPC cell lines by gene transfection. Restoration of LTF expression in NPC cells resulted in blockage of cell cycle progression, significant inhibition of cell growth and a reduced colony‐formation capacity in vitro and obviously weaker tumor formation potential in vivo. In conclusion, our data indicate LTF may participate in NPC carcinogenesis as a negative effector, that is, a tumor suppressor gene. J. Cell. Biochem. 112: 1832–1843, 2011. © 2011 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>Base Sequence</subject><subject>Carcinoma</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>DNA Methylation</subject><subject>DNA Mutational Analysis</subject><subject>Female</subject><subject>G1 Phase</subject><subject>gene function</subject><subject>gene mutation</subject><subject>Humans</subject><subject>hypermethylation</subject><subject>inactivation</subject><subject>lactoferrin</subject><subject>Lactoferrin - genetics</subject><subject>Lactoferrin - metabolism</subject><subject>Loss of Heterozygosity</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Molecular Sequence Data</subject><subject>Nasopharyngeal Carcinoma</subject><subject>Nasopharyngeal Neoplasms - metabolism</subject><subject>Neoplasm Transplantation</subject><subject>Promoter Regions, Genetic</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Transcription, Genetic</subject><subject>transfection</subject><subject>Tumor Burden</subject><subject>tumor suppressor gene</subject><issn>0730-2312</issn><issn>1097-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtPwzAQhC0EouVx4A8gXzmkXcdO0hyhUB6qioCiHq2147QuiVPF5dF_j6HAjdNKM9-MVkPICYMeA4j7S616MWfAdkiXQZ5FIhVil3Qh4xAFI-6QA--XAJDnPN4nnZgJgCTjXVI_u8K01ca6Oa2NXqCzvva0bFo6no6odajX9g3XtnEUXUHtOpivTn8JWAUJq423PoDUoW9WC2w3bm6CpbHV1jU1Um2qilbWGX9E9kqsvDn-uYfkeXQ1Hd5E4_vr2-H5ONI8jVkUa1MKUyqFWJbIUAg-UHEiRMp5gUZAUpQaTAZ8kBoxSAZJrpTKU25UClppfkjOtr26bbxvTSlXra3Da5KB_JpMhsnk92SBPd2yq1dVm-KP_N0oAP0t8G4rs_m_Sd4NL34ro23C-rX5-Etg-yLTjGeJnE2u5eXsgT2OphP5xD8B6UeHZg</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Zhang, Hejun</creator><creator>Feng, Xiangling</creator><creator>Liu, Weidong</creator><creator>Jiang, Xingjun</creator><creator>Shan, Wenjiao</creator><creator>Huang, Chengan</creator><creator>Yi, Hongmei</creator><creator>Zhu, Bin</creator><creator>Zhou, Wen</creator><creator>Wang, Lei</creator><creator>Liu, Chunmei</creator><creator>Zhang, Lihua</creator><creator>Jia, Wenting</creator><creator>Huang, Wei</creator><creator>Li, Guifei</creator><creator>Shi, Jia</creator><creator>Wanggou, Siyi</creator><creator>Yao, Kaitai</creator><creator>Ren, Caiping</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201107</creationdate><title>Underlying mechanisms for LTF inactivation and its functional analysis in nasopharyngeal carcinoma cell lines</title><author>Zhang, Hejun ; Feng, Xiangling ; Liu, Weidong ; Jiang, Xingjun ; Shan, Wenjiao ; Huang, Chengan ; Yi, Hongmei ; Zhu, Bin ; Zhou, Wen ; Wang, Lei ; Liu, Chunmei ; Zhang, Lihua ; Jia, Wenting ; Huang, Wei ; Li, Guifei ; Shi, Jia ; Wanggou, Siyi ; Yao, Kaitai ; Ren, Caiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3621-2cef4efbbaaffa1a4438b2544633dae405dfc0e70386e485859bbb963eb60cbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Animals</topic><topic>Base Sequence</topic><topic>Carcinoma</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>DNA Methylation</topic><topic>DNA Mutational Analysis</topic><topic>Female</topic><topic>G1 Phase</topic><topic>gene function</topic><topic>gene mutation</topic><topic>Humans</topic><topic>hypermethylation</topic><topic>inactivation</topic><topic>lactoferrin</topic><topic>Lactoferrin - genetics</topic><topic>Lactoferrin - metabolism</topic><topic>Loss of Heterozygosity</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Molecular Sequence Data</topic><topic>Nasopharyngeal Carcinoma</topic><topic>Nasopharyngeal Neoplasms - metabolism</topic><topic>Neoplasm Transplantation</topic><topic>Promoter Regions, Genetic</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Transcription, Genetic</topic><topic>transfection</topic><topic>Tumor Burden</topic><topic>tumor suppressor gene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hejun</creatorcontrib><creatorcontrib>Feng, Xiangling</creatorcontrib><creatorcontrib>Liu, Weidong</creatorcontrib><creatorcontrib>Jiang, Xingjun</creatorcontrib><creatorcontrib>Shan, Wenjiao</creatorcontrib><creatorcontrib>Huang, Chengan</creatorcontrib><creatorcontrib>Yi, Hongmei</creatorcontrib><creatorcontrib>Zhu, Bin</creatorcontrib><creatorcontrib>Zhou, Wen</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Liu, Chunmei</creatorcontrib><creatorcontrib>Zhang, Lihua</creatorcontrib><creatorcontrib>Jia, Wenting</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Li, Guifei</creatorcontrib><creatorcontrib>Shi, Jia</creatorcontrib><creatorcontrib>Wanggou, Siyi</creatorcontrib><creatorcontrib>Yao, Kaitai</creatorcontrib><creatorcontrib>Ren, Caiping</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hejun</au><au>Feng, Xiangling</au><au>Liu, Weidong</au><au>Jiang, Xingjun</au><au>Shan, Wenjiao</au><au>Huang, Chengan</au><au>Yi, Hongmei</au><au>Zhu, Bin</au><au>Zhou, Wen</au><au>Wang, Lei</au><au>Liu, Chunmei</au><au>Zhang, Lihua</au><au>Jia, Wenting</au><au>Huang, Wei</au><au>Li, Guifei</au><au>Shi, Jia</au><au>Wanggou, Siyi</au><au>Yao, Kaitai</au><au>Ren, Caiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Underlying mechanisms for LTF inactivation and its functional analysis in nasopharyngeal carcinoma cell lines</atitle><jtitle>Journal of cellular biochemistry</jtitle><addtitle>J. Cell. Biochem</addtitle><date>2011-07</date><risdate>2011</risdate><volume>112</volume><issue>7</issue><spage>1832</spage><epage>1843</epage><pages>1832-1843</pages><issn>0730-2312</issn><eissn>1097-4644</eissn><abstract>The lactoferrin (LTF) gene, located at 3p21.3, behaves like a tumor suppressor gene in diverse tumors. To elucidate the exact role of LTF in NPC, we first detected its expression level in seven NPC cell lines by semi‐quantitative reverse transcription‐polymerase chain reaction (RT‐PCR). The results showed the mRNA level of LTF was nearly undetectable in all the seven NPC cell lines, while it could be detected in chronic nasopharyngitis tissues. Subsequently, we used methylation‐specific PCR (MSP), microsatellite assay, PCR‐single‐strand conformation polymorphism (PCR‐SSCP) and sequencing methods to examine the promoter methylation, loss of heterozygosity (LOH) and gene mutation of LTF in NPC cell lines respectively. Consequently, we found that 100% (7 of 7) of NPC cell lines were methylated in LTF promoter, only one cell line (14%, 1 of 7) had LOH and gene mutation of LTF, respectively, while LTF exhibited re‐expression in all cell lines after 5‐aza‐dC treatment, indicating promoter methylation should be the key mechanism causing LTF downregulation in NPC cell lines. Furthermore, patched methylation assay confirmed that promoter methylation could down‐regulate LTF gene expression in NPC cells. Finally, we investigated the function of LTF in NPC cell lines by gene transfection. Restoration of LTF expression in NPC cells resulted in blockage of cell cycle progression, significant inhibition of cell growth and a reduced colony‐formation capacity in vitro and obviously weaker tumor formation potential in vivo. In conclusion, our data indicate LTF may participate in NPC carcinogenesis as a negative effector, that is, a tumor suppressor gene. J. Cell. Biochem. 112: 1832–1843, 2011. © 2011 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21400573</pmid><doi>10.1002/jcb.23101</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-2312 |
ispartof | Journal of cellular biochemistry, 2011-07, Vol.112 (7), p.1832-1843 |
issn | 0730-2312 1097-4644 |
language | eng |
recordid | cdi_crossref_primary_10_1002_jcb_23101 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE |
subjects | Animals Base Sequence Carcinoma Cell Line, Tumor Cell Proliferation DNA Methylation DNA Mutational Analysis Female G1 Phase gene function gene mutation Humans hypermethylation inactivation lactoferrin Lactoferrin - genetics Lactoferrin - metabolism Loss of Heterozygosity Male Mice Mice, Nude Molecular Sequence Data Nasopharyngeal Carcinoma Nasopharyngeal Neoplasms - metabolism Neoplasm Transplantation Promoter Regions, Genetic Recombinant Proteins - genetics Recombinant Proteins - metabolism Transcription, Genetic transfection Tumor Burden tumor suppressor gene |
title | Underlying mechanisms for LTF inactivation and its functional analysis in nasopharyngeal carcinoma cell lines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A31%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Underlying%20mechanisms%20for%20LTF%20inactivation%20and%20its%20functional%20analysis%20in%20nasopharyngeal%20carcinoma%20cell%20lines&rft.jtitle=Journal%20of%20cellular%20biochemistry&rft.au=Zhang,%20Hejun&rft.date=2011-07&rft.volume=112&rft.issue=7&rft.spage=1832&rft.epage=1843&rft.pages=1832-1843&rft.issn=0730-2312&rft.eissn=1097-4644&rft_id=info:doi/10.1002/jcb.23101&rft_dat=%3Cwiley_cross%3EJCB23101%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21400573&rfr_iscdi=true |