Isolation of baculovirus-expressed human vitamin D receptor: DNA responsive element interactions and phosphorylation of the purified receptor
Two controversial aspects in the mechanism of human vitamin D receptor (hVDR) action are the possible significance of VDR homodimers and the functional role of receptor phosphorylation. To address these issues, milligram quantities of baculovirus‐expressed hVDR were purified to 97% homogeneity, and...
Gespeichert in:
Veröffentlicht in: | Journal of cellular biochemistry 2002, Vol.85 (2), p.435-457 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 457 |
---|---|
container_issue | 2 |
container_start_page | 435 |
container_title | Journal of cellular biochemistry |
container_volume | 85 |
creator | Jurutka, Peter W. MacDonald, Paul N. Nakajima, Shigeo Hsieh, Jui-Cheng Thompson, Paul D Whitfield, G. Kerr Galligan, Michael A. Haussler, Carol A. Haussler, Mark R. |
description | Two controversial aspects in the mechanism of human vitamin D receptor (hVDR) action are the possible significance of VDR homodimers and the functional role of receptor phosphorylation. To address these issues, milligram quantities of baculovirus‐expressed hVDR were purified to 97% homogeneity, and then tested for binding to the rat osteocalcin vitamin D responsive element (VDRE) via electrophoretic mobility shift and half‐site competition assays in the presence or absence of a CV‐1 nuclear extract containing retinoid X receptor (RXR). Methylation interference analysis revealed that both the hVDR homodimer and the VDR‐RXR heterodimer display similar patterns of VDRE G‐base protection. However, in competition studies, the relative dissociation of the homodimeric hVDR complex from the VDRE was extremely rapid (t1/2 5 min), thus illustrating the relative instability and low affinity of homodimeric VDR binding to DNA. These results indicate that VDR‐RXR heterodimers are the preferred VDRE binding species. Further, two dimensional gel electrophoresis of hVDR demonstrated several isoelectric forms of the receptor, suggesting that it is subject to multiple phosphorylation events. In vitro kinase assays confirmed that purified hVDR is an efficient substrate for protein kinases A and Cβ, as well as casein kinase II. In vivo studies of the expressed receptor in intact cells, namely baculovirus vector infected Sf9 insect cells and transfected mammalian COS‐7 cells, demonstrated that hVDR was phosphorylated in a hormone‐enhanced fashion. Functional consequences of hVDR phosphorylation were suggested by the observations that: (i) potato acid phosphatase (PAP)‐treated hVDR no longer interacted with the VDRE as either a homodimer or a heteromeric complex with RXR, and (ii) treatment of transfected COS‐7 cells with a phosphatase inhibitor (okadaic acid) along with 1,25‐dihydroxyvitamin D3 (1,25(OH)2D3) resulted in a synergistic enhancement of both hVDR phosphorylation and transactivation of a VDRE‐linked reporter gene, compared to the effect of treatment with either agent alone. These studies point to a significant role for phosphorylation of VDR in regulating high‐affinity VDR‐RXR interactions with VDREs, and also in modulating 1,25(OH)2D3‐elicited transcriptional activation in target cells. J. Cell. Biochem. 85: 435–457, 2002. © 2002 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/jcb.10134 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jcb_10134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_CKVKNLF6_L</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3594-de9df4c3b2b3b6f4edf668015af662df4e8ec4b307fa731afed884947ca4ac13</originalsourceid><addsrcrecordid>eNp1kLlOAzEQhi0EIuEoeAHklmKJvXb2oINwBaLQRFBaXu9YcdhL9m4gD8E745AEKorRjOVvvpF-hM4ouaSEhIOFyvxAGd9DfUrSOOAR5_uoT2JGgpDRsIeOnFsQQtKUhYeoR2nKkyhN-uhr7OpCtqaucK1xJlVX1EtjOxfAZ2PBOcjxvCtlhZemlaWp8C22oKBpa3uFb6fX_uWaunJmCRgKKKFqsalasFKtrQ7LKsfNvHa-7OrvVDsH3HTWaOMv7Iwn6EDLwsHpth-j2f3dbPQYTF4exqPrSaDYMOVBDmmuuWJZmLEs0hxyHUUJoUPpe-i_IAHFM0ZiLWNGpYY8SXjKYyW5VJQdo4uNVtnaOQtaNNaU0q4EJWKdqPCJip9EPXu-YZsuKyH_I7cRemCwAT5MAav_TeJpdLNTBpsN41r4_N2Q9l1EMYuH4m36IEbPr8_TyX0kJuwb_UWT9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Isolation of baculovirus-expressed human vitamin D receptor: DNA responsive element interactions and phosphorylation of the purified receptor</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jurutka, Peter W. ; MacDonald, Paul N. ; Nakajima, Shigeo ; Hsieh, Jui-Cheng ; Thompson, Paul D ; Whitfield, G. Kerr ; Galligan, Michael A. ; Haussler, Carol A. ; Haussler, Mark R.</creator><creatorcontrib>Jurutka, Peter W. ; MacDonald, Paul N. ; Nakajima, Shigeo ; Hsieh, Jui-Cheng ; Thompson, Paul D ; Whitfield, G. Kerr ; Galligan, Michael A. ; Haussler, Carol A. ; Haussler, Mark R.</creatorcontrib><description>Two controversial aspects in the mechanism of human vitamin D receptor (hVDR) action are the possible significance of VDR homodimers and the functional role of receptor phosphorylation. To address these issues, milligram quantities of baculovirus‐expressed hVDR were purified to 97% homogeneity, and then tested for binding to the rat osteocalcin vitamin D responsive element (VDRE) via electrophoretic mobility shift and half‐site competition assays in the presence or absence of a CV‐1 nuclear extract containing retinoid X receptor (RXR). Methylation interference analysis revealed that both the hVDR homodimer and the VDR‐RXR heterodimer display similar patterns of VDRE G‐base protection. However, in competition studies, the relative dissociation of the homodimeric hVDR complex from the VDRE was extremely rapid (t1/2 < 30 s) compared to the dissociation of the heteromeric complex (t1/2 > 5 min), thus illustrating the relative instability and low affinity of homodimeric VDR binding to DNA. These results indicate that VDR‐RXR heterodimers are the preferred VDRE binding species. Further, two dimensional gel electrophoresis of hVDR demonstrated several isoelectric forms of the receptor, suggesting that it is subject to multiple phosphorylation events. In vitro kinase assays confirmed that purified hVDR is an efficient substrate for protein kinases A and Cβ, as well as casein kinase II. In vivo studies of the expressed receptor in intact cells, namely baculovirus vector infected Sf9 insect cells and transfected mammalian COS‐7 cells, demonstrated that hVDR was phosphorylated in a hormone‐enhanced fashion. Functional consequences of hVDR phosphorylation were suggested by the observations that: (i) potato acid phosphatase (PAP)‐treated hVDR no longer interacted with the VDRE as either a homodimer or a heteromeric complex with RXR, and (ii) treatment of transfected COS‐7 cells with a phosphatase inhibitor (okadaic acid) along with 1,25‐dihydroxyvitamin D3 (1,25(OH)2D3) resulted in a synergistic enhancement of both hVDR phosphorylation and transactivation of a VDRE‐linked reporter gene, compared to the effect of treatment with either agent alone. These studies point to a significant role for phosphorylation of VDR in regulating high‐affinity VDR‐RXR interactions with VDREs, and also in modulating 1,25(OH)2D3‐elicited transcriptional activation in target cells. J. Cell. Biochem. 85: 435–457, 2002. © 2002 Wiley‐Liss, Inc.</description><identifier>ISSN: 0730-2312</identifier><identifier>EISSN: 1097-4644</identifier><identifier>DOI: 10.1002/jcb.10134</identifier><identifier>PMID: 11948698</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>1,25‐dihydroxyvitamin D3 ; 25-dihydroxyvitamin D3 ; Acid Phosphatase - metabolism ; Animals ; Baculoviridae - genetics ; Binding Sites ; Blotting, Western ; COS Cells ; Dimerization ; DNA - metabolism ; DNA Primers - chemistry ; Electrophoretic Mobility Shift Assay ; Genes, Regulator - genetics ; Genetic Vectors ; heterodimerization ; Humans ; nuclear hormone receptor ; Okadaic Acid - pharmacology ; Osteocalcin - genetics ; Osteocalcin - metabolism ; Phosphorylation ; Promoter Regions, Genetic - genetics ; Rats ; Receptors, Calcitriol - genetics ; Receptors, Calcitriol - isolation & purification ; Receptors, Calcitriol - metabolism ; Receptors, Retinoic Acid - genetics ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Response Elements - genetics ; Retinoid X Receptors ; Transcription Factors - genetics ; transcriptional activation ; Tretinoin - physiology ; Vitamin D - metabolism</subject><ispartof>Journal of cellular biochemistry, 2002, Vol.85 (2), p.435-457</ispartof><rights>Copyright © 2002 Wiley‐Liss, Inc.</rights><rights>Copyright 2002 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3594-de9df4c3b2b3b6f4edf668015af662df4e8ec4b307fa731afed884947ca4ac13</citedby><cites>FETCH-LOGICAL-c3594-de9df4c3b2b3b6f4edf668015af662df4e8ec4b307fa731afed884947ca4ac13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcb.10134$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcb.10134$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,4010,27900,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11948698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jurutka, Peter W.</creatorcontrib><creatorcontrib>MacDonald, Paul N.</creatorcontrib><creatorcontrib>Nakajima, Shigeo</creatorcontrib><creatorcontrib>Hsieh, Jui-Cheng</creatorcontrib><creatorcontrib>Thompson, Paul D</creatorcontrib><creatorcontrib>Whitfield, G. Kerr</creatorcontrib><creatorcontrib>Galligan, Michael A.</creatorcontrib><creatorcontrib>Haussler, Carol A.</creatorcontrib><creatorcontrib>Haussler, Mark R.</creatorcontrib><title>Isolation of baculovirus-expressed human vitamin D receptor: DNA responsive element interactions and phosphorylation of the purified receptor</title><title>Journal of cellular biochemistry</title><addtitle>J. Cell. Biochem</addtitle><description>Two controversial aspects in the mechanism of human vitamin D receptor (hVDR) action are the possible significance of VDR homodimers and the functional role of receptor phosphorylation. To address these issues, milligram quantities of baculovirus‐expressed hVDR were purified to 97% homogeneity, and then tested for binding to the rat osteocalcin vitamin D responsive element (VDRE) via electrophoretic mobility shift and half‐site competition assays in the presence or absence of a CV‐1 nuclear extract containing retinoid X receptor (RXR). Methylation interference analysis revealed that both the hVDR homodimer and the VDR‐RXR heterodimer display similar patterns of VDRE G‐base protection. However, in competition studies, the relative dissociation of the homodimeric hVDR complex from the VDRE was extremely rapid (t1/2 < 30 s) compared to the dissociation of the heteromeric complex (t1/2 > 5 min), thus illustrating the relative instability and low affinity of homodimeric VDR binding to DNA. These results indicate that VDR‐RXR heterodimers are the preferred VDRE binding species. Further, two dimensional gel electrophoresis of hVDR demonstrated several isoelectric forms of the receptor, suggesting that it is subject to multiple phosphorylation events. In vitro kinase assays confirmed that purified hVDR is an efficient substrate for protein kinases A and Cβ, as well as casein kinase II. In vivo studies of the expressed receptor in intact cells, namely baculovirus vector infected Sf9 insect cells and transfected mammalian COS‐7 cells, demonstrated that hVDR was phosphorylated in a hormone‐enhanced fashion. Functional consequences of hVDR phosphorylation were suggested by the observations that: (i) potato acid phosphatase (PAP)‐treated hVDR no longer interacted with the VDRE as either a homodimer or a heteromeric complex with RXR, and (ii) treatment of transfected COS‐7 cells with a phosphatase inhibitor (okadaic acid) along with 1,25‐dihydroxyvitamin D3 (1,25(OH)2D3) resulted in a synergistic enhancement of both hVDR phosphorylation and transactivation of a VDRE‐linked reporter gene, compared to the effect of treatment with either agent alone. These studies point to a significant role for phosphorylation of VDR in regulating high‐affinity VDR‐RXR interactions with VDREs, and also in modulating 1,25(OH)2D3‐elicited transcriptional activation in target cells. J. Cell. Biochem. 85: 435–457, 2002. © 2002 Wiley‐Liss, Inc.</description><subject>1,25‐dihydroxyvitamin D3</subject><subject>25-dihydroxyvitamin D3</subject><subject>Acid Phosphatase - metabolism</subject><subject>Animals</subject><subject>Baculoviridae - genetics</subject><subject>Binding Sites</subject><subject>Blotting, Western</subject><subject>COS Cells</subject><subject>Dimerization</subject><subject>DNA - metabolism</subject><subject>DNA Primers - chemistry</subject><subject>Electrophoretic Mobility Shift Assay</subject><subject>Genes, Regulator - genetics</subject><subject>Genetic Vectors</subject><subject>heterodimerization</subject><subject>Humans</subject><subject>nuclear hormone receptor</subject><subject>Okadaic Acid - pharmacology</subject><subject>Osteocalcin - genetics</subject><subject>Osteocalcin - metabolism</subject><subject>Phosphorylation</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Rats</subject><subject>Receptors, Calcitriol - genetics</subject><subject>Receptors, Calcitriol - isolation & purification</subject><subject>Receptors, Calcitriol - metabolism</subject><subject>Receptors, Retinoic Acid - genetics</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Response Elements - genetics</subject><subject>Retinoid X Receptors</subject><subject>Transcription Factors - genetics</subject><subject>transcriptional activation</subject><subject>Tretinoin - physiology</subject><subject>Vitamin D - metabolism</subject><issn>0730-2312</issn><issn>1097-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kLlOAzEQhi0EIuEoeAHklmKJvXb2oINwBaLQRFBaXu9YcdhL9m4gD8E745AEKorRjOVvvpF-hM4ouaSEhIOFyvxAGd9DfUrSOOAR5_uoT2JGgpDRsIeOnFsQQtKUhYeoR2nKkyhN-uhr7OpCtqaucK1xJlVX1EtjOxfAZ2PBOcjxvCtlhZemlaWp8C22oKBpa3uFb6fX_uWaunJmCRgKKKFqsalasFKtrQ7LKsfNvHa-7OrvVDsH3HTWaOMv7Iwn6EDLwsHpth-j2f3dbPQYTF4exqPrSaDYMOVBDmmuuWJZmLEs0hxyHUUJoUPpe-i_IAHFM0ZiLWNGpYY8SXjKYyW5VJQdo4uNVtnaOQtaNNaU0q4EJWKdqPCJip9EPXu-YZsuKyH_I7cRemCwAT5MAav_TeJpdLNTBpsN41r4_N2Q9l1EMYuH4m36IEbPr8_TyX0kJuwb_UWT9w</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Jurutka, Peter W.</creator><creator>MacDonald, Paul N.</creator><creator>Nakajima, Shigeo</creator><creator>Hsieh, Jui-Cheng</creator><creator>Thompson, Paul D</creator><creator>Whitfield, G. Kerr</creator><creator>Galligan, Michael A.</creator><creator>Haussler, Carol A.</creator><creator>Haussler, Mark R.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2002</creationdate><title>Isolation of baculovirus-expressed human vitamin D receptor: DNA responsive element interactions and phosphorylation of the purified receptor</title><author>Jurutka, Peter W. ; MacDonald, Paul N. ; Nakajima, Shigeo ; Hsieh, Jui-Cheng ; Thompson, Paul D ; Whitfield, G. Kerr ; Galligan, Michael A. ; Haussler, Carol A. ; Haussler, Mark R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3594-de9df4c3b2b3b6f4edf668015af662df4e8ec4b307fa731afed884947ca4ac13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>1,25‐dihydroxyvitamin D3</topic><topic>25-dihydroxyvitamin D3</topic><topic>Acid Phosphatase - metabolism</topic><topic>Animals</topic><topic>Baculoviridae - genetics</topic><topic>Binding Sites</topic><topic>Blotting, Western</topic><topic>COS Cells</topic><topic>Dimerization</topic><topic>DNA - metabolism</topic><topic>DNA Primers - chemistry</topic><topic>Electrophoretic Mobility Shift Assay</topic><topic>Genes, Regulator - genetics</topic><topic>Genetic Vectors</topic><topic>heterodimerization</topic><topic>Humans</topic><topic>nuclear hormone receptor</topic><topic>Okadaic Acid - pharmacology</topic><topic>Osteocalcin - genetics</topic><topic>Osteocalcin - metabolism</topic><topic>Phosphorylation</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Rats</topic><topic>Receptors, Calcitriol - genetics</topic><topic>Receptors, Calcitriol - isolation & purification</topic><topic>Receptors, Calcitriol - metabolism</topic><topic>Receptors, Retinoic Acid - genetics</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Response Elements - genetics</topic><topic>Retinoid X Receptors</topic><topic>Transcription Factors - genetics</topic><topic>transcriptional activation</topic><topic>Tretinoin - physiology</topic><topic>Vitamin D - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jurutka, Peter W.</creatorcontrib><creatorcontrib>MacDonald, Paul N.</creatorcontrib><creatorcontrib>Nakajima, Shigeo</creatorcontrib><creatorcontrib>Hsieh, Jui-Cheng</creatorcontrib><creatorcontrib>Thompson, Paul D</creatorcontrib><creatorcontrib>Whitfield, G. Kerr</creatorcontrib><creatorcontrib>Galligan, Michael A.</creatorcontrib><creatorcontrib>Haussler, Carol A.</creatorcontrib><creatorcontrib>Haussler, Mark R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jurutka, Peter W.</au><au>MacDonald, Paul N.</au><au>Nakajima, Shigeo</au><au>Hsieh, Jui-Cheng</au><au>Thompson, Paul D</au><au>Whitfield, G. Kerr</au><au>Galligan, Michael A.</au><au>Haussler, Carol A.</au><au>Haussler, Mark R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isolation of baculovirus-expressed human vitamin D receptor: DNA responsive element interactions and phosphorylation of the purified receptor</atitle><jtitle>Journal of cellular biochemistry</jtitle><addtitle>J. Cell. Biochem</addtitle><date>2002</date><risdate>2002</risdate><volume>85</volume><issue>2</issue><spage>435</spage><epage>457</epage><pages>435-457</pages><issn>0730-2312</issn><eissn>1097-4644</eissn><abstract>Two controversial aspects in the mechanism of human vitamin D receptor (hVDR) action are the possible significance of VDR homodimers and the functional role of receptor phosphorylation. To address these issues, milligram quantities of baculovirus‐expressed hVDR were purified to 97% homogeneity, and then tested for binding to the rat osteocalcin vitamin D responsive element (VDRE) via electrophoretic mobility shift and half‐site competition assays in the presence or absence of a CV‐1 nuclear extract containing retinoid X receptor (RXR). Methylation interference analysis revealed that both the hVDR homodimer and the VDR‐RXR heterodimer display similar patterns of VDRE G‐base protection. However, in competition studies, the relative dissociation of the homodimeric hVDR complex from the VDRE was extremely rapid (t1/2 < 30 s) compared to the dissociation of the heteromeric complex (t1/2 > 5 min), thus illustrating the relative instability and low affinity of homodimeric VDR binding to DNA. These results indicate that VDR‐RXR heterodimers are the preferred VDRE binding species. Further, two dimensional gel electrophoresis of hVDR demonstrated several isoelectric forms of the receptor, suggesting that it is subject to multiple phosphorylation events. In vitro kinase assays confirmed that purified hVDR is an efficient substrate for protein kinases A and Cβ, as well as casein kinase II. In vivo studies of the expressed receptor in intact cells, namely baculovirus vector infected Sf9 insect cells and transfected mammalian COS‐7 cells, demonstrated that hVDR was phosphorylated in a hormone‐enhanced fashion. Functional consequences of hVDR phosphorylation were suggested by the observations that: (i) potato acid phosphatase (PAP)‐treated hVDR no longer interacted with the VDRE as either a homodimer or a heteromeric complex with RXR, and (ii) treatment of transfected COS‐7 cells with a phosphatase inhibitor (okadaic acid) along with 1,25‐dihydroxyvitamin D3 (1,25(OH)2D3) resulted in a synergistic enhancement of both hVDR phosphorylation and transactivation of a VDRE‐linked reporter gene, compared to the effect of treatment with either agent alone. These studies point to a significant role for phosphorylation of VDR in regulating high‐affinity VDR‐RXR interactions with VDREs, and also in modulating 1,25(OH)2D3‐elicited transcriptional activation in target cells. J. Cell. Biochem. 85: 435–457, 2002. © 2002 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>11948698</pmid><doi>10.1002/jcb.10134</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0730-2312 |
ispartof | Journal of cellular biochemistry, 2002, Vol.85 (2), p.435-457 |
issn | 0730-2312 1097-4644 |
language | eng |
recordid | cdi_crossref_primary_10_1002_jcb_10134 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | 1,25‐dihydroxyvitamin D3 25-dihydroxyvitamin D3 Acid Phosphatase - metabolism Animals Baculoviridae - genetics Binding Sites Blotting, Western COS Cells Dimerization DNA - metabolism DNA Primers - chemistry Electrophoretic Mobility Shift Assay Genes, Regulator - genetics Genetic Vectors heterodimerization Humans nuclear hormone receptor Okadaic Acid - pharmacology Osteocalcin - genetics Osteocalcin - metabolism Phosphorylation Promoter Regions, Genetic - genetics Rats Receptors, Calcitriol - genetics Receptors, Calcitriol - isolation & purification Receptors, Calcitriol - metabolism Receptors, Retinoic Acid - genetics Recombinant Proteins - genetics Recombinant Proteins - metabolism Response Elements - genetics Retinoid X Receptors Transcription Factors - genetics transcriptional activation Tretinoin - physiology Vitamin D - metabolism |
title | Isolation of baculovirus-expressed human vitamin D receptor: DNA responsive element interactions and phosphorylation of the purified receptor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T11%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isolation%20of%20baculovirus-expressed%20human%20vitamin%20D%20receptor:%20DNA%20responsive%20element%20interactions%20and%20phosphorylation%20of%20the%20purified%20receptor&rft.jtitle=Journal%20of%20cellular%20biochemistry&rft.au=Jurutka,%20Peter%20W.&rft.date=2002&rft.volume=85&rft.issue=2&rft.spage=435&rft.epage=457&rft.pages=435-457&rft.issn=0730-2312&rft.eissn=1097-4644&rft_id=info:doi/10.1002/jcb.10134&rft_dat=%3Cistex_cross%3Eark_67375_WNG_CKVKNLF6_L%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/11948698&rfr_iscdi=true |