Isolation of baculovirus-expressed human vitamin D receptor: DNA responsive element interactions and phosphorylation of the purified receptor

Two controversial aspects in the mechanism of human vitamin D receptor (hVDR) action are the possible significance of VDR homodimers and the functional role of receptor phosphorylation. To address these issues, milligram quantities of baculovirus‐expressed hVDR were purified to 97% homogeneity, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular biochemistry 2002, Vol.85 (2), p.435-457
Hauptverfasser: Jurutka, Peter W., MacDonald, Paul N., Nakajima, Shigeo, Hsieh, Jui-Cheng, Thompson, Paul D, Whitfield, G. Kerr, Galligan, Michael A., Haussler, Carol A., Haussler, Mark R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 457
container_issue 2
container_start_page 435
container_title Journal of cellular biochemistry
container_volume 85
creator Jurutka, Peter W.
MacDonald, Paul N.
Nakajima, Shigeo
Hsieh, Jui-Cheng
Thompson, Paul D
Whitfield, G. Kerr
Galligan, Michael A.
Haussler, Carol A.
Haussler, Mark R.
description Two controversial aspects in the mechanism of human vitamin D receptor (hVDR) action are the possible significance of VDR homodimers and the functional role of receptor phosphorylation. To address these issues, milligram quantities of baculovirus‐expressed hVDR were purified to 97% homogeneity, and then tested for binding to the rat osteocalcin vitamin D responsive element (VDRE) via electrophoretic mobility shift and half‐site competition assays in the presence or absence of a CV‐1 nuclear extract containing retinoid X receptor (RXR). Methylation interference analysis revealed that both the hVDR homodimer and the VDR‐RXR heterodimer display similar patterns of VDRE G‐base protection. However, in competition studies, the relative dissociation of the homodimeric hVDR complex from the VDRE was extremely rapid (t1/2  5 min), thus illustrating the relative instability and low affinity of homodimeric VDR binding to DNA. These results indicate that VDR‐RXR heterodimers are the preferred VDRE binding species. Further, two dimensional gel electrophoresis of hVDR demonstrated several isoelectric forms of the receptor, suggesting that it is subject to multiple phosphorylation events. In vitro kinase assays confirmed that purified hVDR is an efficient substrate for protein kinases A and Cβ, as well as casein kinase II. In vivo studies of the expressed receptor in intact cells, namely baculovirus vector infected Sf9 insect cells and transfected mammalian COS‐7 cells, demonstrated that hVDR was phosphorylated in a hormone‐enhanced fashion. Functional consequences of hVDR phosphorylation were suggested by the observations that: (i) potato acid phosphatase (PAP)‐treated hVDR no longer interacted with the VDRE as either a homodimer or a heteromeric complex with RXR, and (ii) treatment of transfected COS‐7 cells with a phosphatase inhibitor (okadaic acid) along with 1,25‐dihydroxyvitamin D3 (1,25(OH)2D3) resulted in a synergistic enhancement of both hVDR phosphorylation and transactivation of a VDRE‐linked reporter gene, compared to the effect of treatment with either agent alone. These studies point to a significant role for phosphorylation of VDR in regulating high‐affinity VDR‐RXR interactions with VDREs, and also in modulating 1,25(OH)2D3‐elicited transcriptional activation in target cells. J. Cell. Biochem. 85: 435–457, 2002. © 2002 Wiley‐Liss, Inc.
doi_str_mv 10.1002/jcb.10134
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jcb_10134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_CKVKNLF6_L</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3594-de9df4c3b2b3b6f4edf668015af662df4e8ec4b307fa731afed884947ca4ac13</originalsourceid><addsrcrecordid>eNp1kLlOAzEQhi0EIuEoeAHklmKJvXb2oINwBaLQRFBaXu9YcdhL9m4gD8E745AEKorRjOVvvpF-hM4ouaSEhIOFyvxAGd9DfUrSOOAR5_uoT2JGgpDRsIeOnFsQQtKUhYeoR2nKkyhN-uhr7OpCtqaucK1xJlVX1EtjOxfAZ2PBOcjxvCtlhZemlaWp8C22oKBpa3uFb6fX_uWaunJmCRgKKKFqsalasFKtrQ7LKsfNvHa-7OrvVDsH3HTWaOMv7Iwn6EDLwsHpth-j2f3dbPQYTF4exqPrSaDYMOVBDmmuuWJZmLEs0hxyHUUJoUPpe-i_IAHFM0ZiLWNGpYY8SXjKYyW5VJQdo4uNVtnaOQtaNNaU0q4EJWKdqPCJip9EPXu-YZsuKyH_I7cRemCwAT5MAav_TeJpdLNTBpsN41r4_N2Q9l1EMYuH4m36IEbPr8_TyX0kJuwb_UWT9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Isolation of baculovirus-expressed human vitamin D receptor: DNA responsive element interactions and phosphorylation of the purified receptor</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jurutka, Peter W. ; MacDonald, Paul N. ; Nakajima, Shigeo ; Hsieh, Jui-Cheng ; Thompson, Paul D ; Whitfield, G. Kerr ; Galligan, Michael A. ; Haussler, Carol A. ; Haussler, Mark R.</creator><creatorcontrib>Jurutka, Peter W. ; MacDonald, Paul N. ; Nakajima, Shigeo ; Hsieh, Jui-Cheng ; Thompson, Paul D ; Whitfield, G. Kerr ; Galligan, Michael A. ; Haussler, Carol A. ; Haussler, Mark R.</creatorcontrib><description>Two controversial aspects in the mechanism of human vitamin D receptor (hVDR) action are the possible significance of VDR homodimers and the functional role of receptor phosphorylation. To address these issues, milligram quantities of baculovirus‐expressed hVDR were purified to 97% homogeneity, and then tested for binding to the rat osteocalcin vitamin D responsive element (VDRE) via electrophoretic mobility shift and half‐site competition assays in the presence or absence of a CV‐1 nuclear extract containing retinoid X receptor (RXR). Methylation interference analysis revealed that both the hVDR homodimer and the VDR‐RXR heterodimer display similar patterns of VDRE G‐base protection. However, in competition studies, the relative dissociation of the homodimeric hVDR complex from the VDRE was extremely rapid (t1/2 &lt; 30 s) compared to the dissociation of the heteromeric complex (t1/2 &gt; 5 min), thus illustrating the relative instability and low affinity of homodimeric VDR binding to DNA. These results indicate that VDR‐RXR heterodimers are the preferred VDRE binding species. Further, two dimensional gel electrophoresis of hVDR demonstrated several isoelectric forms of the receptor, suggesting that it is subject to multiple phosphorylation events. In vitro kinase assays confirmed that purified hVDR is an efficient substrate for protein kinases A and Cβ, as well as casein kinase II. In vivo studies of the expressed receptor in intact cells, namely baculovirus vector infected Sf9 insect cells and transfected mammalian COS‐7 cells, demonstrated that hVDR was phosphorylated in a hormone‐enhanced fashion. Functional consequences of hVDR phosphorylation were suggested by the observations that: (i) potato acid phosphatase (PAP)‐treated hVDR no longer interacted with the VDRE as either a homodimer or a heteromeric complex with RXR, and (ii) treatment of transfected COS‐7 cells with a phosphatase inhibitor (okadaic acid) along with 1,25‐dihydroxyvitamin D3 (1,25(OH)2D3) resulted in a synergistic enhancement of both hVDR phosphorylation and transactivation of a VDRE‐linked reporter gene, compared to the effect of treatment with either agent alone. These studies point to a significant role for phosphorylation of VDR in regulating high‐affinity VDR‐RXR interactions with VDREs, and also in modulating 1,25(OH)2D3‐elicited transcriptional activation in target cells. J. Cell. Biochem. 85: 435–457, 2002. © 2002 Wiley‐Liss, Inc.</description><identifier>ISSN: 0730-2312</identifier><identifier>EISSN: 1097-4644</identifier><identifier>DOI: 10.1002/jcb.10134</identifier><identifier>PMID: 11948698</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>1,25‐dihydroxyvitamin D3 ; 25-dihydroxyvitamin D3 ; Acid Phosphatase - metabolism ; Animals ; Baculoviridae - genetics ; Binding Sites ; Blotting, Western ; COS Cells ; Dimerization ; DNA - metabolism ; DNA Primers - chemistry ; Electrophoretic Mobility Shift Assay ; Genes, Regulator - genetics ; Genetic Vectors ; heterodimerization ; Humans ; nuclear hormone receptor ; Okadaic Acid - pharmacology ; Osteocalcin - genetics ; Osteocalcin - metabolism ; Phosphorylation ; Promoter Regions, Genetic - genetics ; Rats ; Receptors, Calcitriol - genetics ; Receptors, Calcitriol - isolation &amp; purification ; Receptors, Calcitriol - metabolism ; Receptors, Retinoic Acid - genetics ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Response Elements - genetics ; Retinoid X Receptors ; Transcription Factors - genetics ; transcriptional activation ; Tretinoin - physiology ; Vitamin D - metabolism</subject><ispartof>Journal of cellular biochemistry, 2002, Vol.85 (2), p.435-457</ispartof><rights>Copyright © 2002 Wiley‐Liss, Inc.</rights><rights>Copyright 2002 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3594-de9df4c3b2b3b6f4edf668015af662df4e8ec4b307fa731afed884947ca4ac13</citedby><cites>FETCH-LOGICAL-c3594-de9df4c3b2b3b6f4edf668015af662df4e8ec4b307fa731afed884947ca4ac13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcb.10134$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcb.10134$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,4010,27900,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11948698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jurutka, Peter W.</creatorcontrib><creatorcontrib>MacDonald, Paul N.</creatorcontrib><creatorcontrib>Nakajima, Shigeo</creatorcontrib><creatorcontrib>Hsieh, Jui-Cheng</creatorcontrib><creatorcontrib>Thompson, Paul D</creatorcontrib><creatorcontrib>Whitfield, G. Kerr</creatorcontrib><creatorcontrib>Galligan, Michael A.</creatorcontrib><creatorcontrib>Haussler, Carol A.</creatorcontrib><creatorcontrib>Haussler, Mark R.</creatorcontrib><title>Isolation of baculovirus-expressed human vitamin D receptor: DNA responsive element interactions and phosphorylation of the purified receptor</title><title>Journal of cellular biochemistry</title><addtitle>J. Cell. Biochem</addtitle><description>Two controversial aspects in the mechanism of human vitamin D receptor (hVDR) action are the possible significance of VDR homodimers and the functional role of receptor phosphorylation. To address these issues, milligram quantities of baculovirus‐expressed hVDR were purified to 97% homogeneity, and then tested for binding to the rat osteocalcin vitamin D responsive element (VDRE) via electrophoretic mobility shift and half‐site competition assays in the presence or absence of a CV‐1 nuclear extract containing retinoid X receptor (RXR). Methylation interference analysis revealed that both the hVDR homodimer and the VDR‐RXR heterodimer display similar patterns of VDRE G‐base protection. However, in competition studies, the relative dissociation of the homodimeric hVDR complex from the VDRE was extremely rapid (t1/2 &lt; 30 s) compared to the dissociation of the heteromeric complex (t1/2 &gt; 5 min), thus illustrating the relative instability and low affinity of homodimeric VDR binding to DNA. These results indicate that VDR‐RXR heterodimers are the preferred VDRE binding species. Further, two dimensional gel electrophoresis of hVDR demonstrated several isoelectric forms of the receptor, suggesting that it is subject to multiple phosphorylation events. In vitro kinase assays confirmed that purified hVDR is an efficient substrate for protein kinases A and Cβ, as well as casein kinase II. In vivo studies of the expressed receptor in intact cells, namely baculovirus vector infected Sf9 insect cells and transfected mammalian COS‐7 cells, demonstrated that hVDR was phosphorylated in a hormone‐enhanced fashion. Functional consequences of hVDR phosphorylation were suggested by the observations that: (i) potato acid phosphatase (PAP)‐treated hVDR no longer interacted with the VDRE as either a homodimer or a heteromeric complex with RXR, and (ii) treatment of transfected COS‐7 cells with a phosphatase inhibitor (okadaic acid) along with 1,25‐dihydroxyvitamin D3 (1,25(OH)2D3) resulted in a synergistic enhancement of both hVDR phosphorylation and transactivation of a VDRE‐linked reporter gene, compared to the effect of treatment with either agent alone. These studies point to a significant role for phosphorylation of VDR in regulating high‐affinity VDR‐RXR interactions with VDREs, and also in modulating 1,25(OH)2D3‐elicited transcriptional activation in target cells. J. Cell. Biochem. 85: 435–457, 2002. © 2002 Wiley‐Liss, Inc.</description><subject>1,25‐dihydroxyvitamin D3</subject><subject>25-dihydroxyvitamin D3</subject><subject>Acid Phosphatase - metabolism</subject><subject>Animals</subject><subject>Baculoviridae - genetics</subject><subject>Binding Sites</subject><subject>Blotting, Western</subject><subject>COS Cells</subject><subject>Dimerization</subject><subject>DNA - metabolism</subject><subject>DNA Primers - chemistry</subject><subject>Electrophoretic Mobility Shift Assay</subject><subject>Genes, Regulator - genetics</subject><subject>Genetic Vectors</subject><subject>heterodimerization</subject><subject>Humans</subject><subject>nuclear hormone receptor</subject><subject>Okadaic Acid - pharmacology</subject><subject>Osteocalcin - genetics</subject><subject>Osteocalcin - metabolism</subject><subject>Phosphorylation</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Rats</subject><subject>Receptors, Calcitriol - genetics</subject><subject>Receptors, Calcitriol - isolation &amp; purification</subject><subject>Receptors, Calcitriol - metabolism</subject><subject>Receptors, Retinoic Acid - genetics</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Response Elements - genetics</subject><subject>Retinoid X Receptors</subject><subject>Transcription Factors - genetics</subject><subject>transcriptional activation</subject><subject>Tretinoin - physiology</subject><subject>Vitamin D - metabolism</subject><issn>0730-2312</issn><issn>1097-4644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kLlOAzEQhi0EIuEoeAHklmKJvXb2oINwBaLQRFBaXu9YcdhL9m4gD8E745AEKorRjOVvvpF-hM4ouaSEhIOFyvxAGd9DfUrSOOAR5_uoT2JGgpDRsIeOnFsQQtKUhYeoR2nKkyhN-uhr7OpCtqaucK1xJlVX1EtjOxfAZ2PBOcjxvCtlhZemlaWp8C22oKBpa3uFb6fX_uWaunJmCRgKKKFqsalasFKtrQ7LKsfNvHa-7OrvVDsH3HTWaOMv7Iwn6EDLwsHpth-j2f3dbPQYTF4exqPrSaDYMOVBDmmuuWJZmLEs0hxyHUUJoUPpe-i_IAHFM0ZiLWNGpYY8SXjKYyW5VJQdo4uNVtnaOQtaNNaU0q4EJWKdqPCJip9EPXu-YZsuKyH_I7cRemCwAT5MAav_TeJpdLNTBpsN41r4_N2Q9l1EMYuH4m36IEbPr8_TyX0kJuwb_UWT9w</recordid><startdate>2002</startdate><enddate>2002</enddate><creator>Jurutka, Peter W.</creator><creator>MacDonald, Paul N.</creator><creator>Nakajima, Shigeo</creator><creator>Hsieh, Jui-Cheng</creator><creator>Thompson, Paul D</creator><creator>Whitfield, G. Kerr</creator><creator>Galligan, Michael A.</creator><creator>Haussler, Carol A.</creator><creator>Haussler, Mark R.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2002</creationdate><title>Isolation of baculovirus-expressed human vitamin D receptor: DNA responsive element interactions and phosphorylation of the purified receptor</title><author>Jurutka, Peter W. ; MacDonald, Paul N. ; Nakajima, Shigeo ; Hsieh, Jui-Cheng ; Thompson, Paul D ; Whitfield, G. Kerr ; Galligan, Michael A. ; Haussler, Carol A. ; Haussler, Mark R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3594-de9df4c3b2b3b6f4edf668015af662df4e8ec4b307fa731afed884947ca4ac13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>1,25‐dihydroxyvitamin D3</topic><topic>25-dihydroxyvitamin D3</topic><topic>Acid Phosphatase - metabolism</topic><topic>Animals</topic><topic>Baculoviridae - genetics</topic><topic>Binding Sites</topic><topic>Blotting, Western</topic><topic>COS Cells</topic><topic>Dimerization</topic><topic>DNA - metabolism</topic><topic>DNA Primers - chemistry</topic><topic>Electrophoretic Mobility Shift Assay</topic><topic>Genes, Regulator - genetics</topic><topic>Genetic Vectors</topic><topic>heterodimerization</topic><topic>Humans</topic><topic>nuclear hormone receptor</topic><topic>Okadaic Acid - pharmacology</topic><topic>Osteocalcin - genetics</topic><topic>Osteocalcin - metabolism</topic><topic>Phosphorylation</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Rats</topic><topic>Receptors, Calcitriol - genetics</topic><topic>Receptors, Calcitriol - isolation &amp; purification</topic><topic>Receptors, Calcitriol - metabolism</topic><topic>Receptors, Retinoic Acid - genetics</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Response Elements - genetics</topic><topic>Retinoid X Receptors</topic><topic>Transcription Factors - genetics</topic><topic>transcriptional activation</topic><topic>Tretinoin - physiology</topic><topic>Vitamin D - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jurutka, Peter W.</creatorcontrib><creatorcontrib>MacDonald, Paul N.</creatorcontrib><creatorcontrib>Nakajima, Shigeo</creatorcontrib><creatorcontrib>Hsieh, Jui-Cheng</creatorcontrib><creatorcontrib>Thompson, Paul D</creatorcontrib><creatorcontrib>Whitfield, G. Kerr</creatorcontrib><creatorcontrib>Galligan, Michael A.</creatorcontrib><creatorcontrib>Haussler, Carol A.</creatorcontrib><creatorcontrib>Haussler, Mark R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of cellular biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jurutka, Peter W.</au><au>MacDonald, Paul N.</au><au>Nakajima, Shigeo</au><au>Hsieh, Jui-Cheng</au><au>Thompson, Paul D</au><au>Whitfield, G. Kerr</au><au>Galligan, Michael A.</au><au>Haussler, Carol A.</au><au>Haussler, Mark R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isolation of baculovirus-expressed human vitamin D receptor: DNA responsive element interactions and phosphorylation of the purified receptor</atitle><jtitle>Journal of cellular biochemistry</jtitle><addtitle>J. Cell. Biochem</addtitle><date>2002</date><risdate>2002</risdate><volume>85</volume><issue>2</issue><spage>435</spage><epage>457</epage><pages>435-457</pages><issn>0730-2312</issn><eissn>1097-4644</eissn><abstract>Two controversial aspects in the mechanism of human vitamin D receptor (hVDR) action are the possible significance of VDR homodimers and the functional role of receptor phosphorylation. To address these issues, milligram quantities of baculovirus‐expressed hVDR were purified to 97% homogeneity, and then tested for binding to the rat osteocalcin vitamin D responsive element (VDRE) via electrophoretic mobility shift and half‐site competition assays in the presence or absence of a CV‐1 nuclear extract containing retinoid X receptor (RXR). Methylation interference analysis revealed that both the hVDR homodimer and the VDR‐RXR heterodimer display similar patterns of VDRE G‐base protection. However, in competition studies, the relative dissociation of the homodimeric hVDR complex from the VDRE was extremely rapid (t1/2 &lt; 30 s) compared to the dissociation of the heteromeric complex (t1/2 &gt; 5 min), thus illustrating the relative instability and low affinity of homodimeric VDR binding to DNA. These results indicate that VDR‐RXR heterodimers are the preferred VDRE binding species. Further, two dimensional gel electrophoresis of hVDR demonstrated several isoelectric forms of the receptor, suggesting that it is subject to multiple phosphorylation events. In vitro kinase assays confirmed that purified hVDR is an efficient substrate for protein kinases A and Cβ, as well as casein kinase II. In vivo studies of the expressed receptor in intact cells, namely baculovirus vector infected Sf9 insect cells and transfected mammalian COS‐7 cells, demonstrated that hVDR was phosphorylated in a hormone‐enhanced fashion. Functional consequences of hVDR phosphorylation were suggested by the observations that: (i) potato acid phosphatase (PAP)‐treated hVDR no longer interacted with the VDRE as either a homodimer or a heteromeric complex with RXR, and (ii) treatment of transfected COS‐7 cells with a phosphatase inhibitor (okadaic acid) along with 1,25‐dihydroxyvitamin D3 (1,25(OH)2D3) resulted in a synergistic enhancement of both hVDR phosphorylation and transactivation of a VDRE‐linked reporter gene, compared to the effect of treatment with either agent alone. These studies point to a significant role for phosphorylation of VDR in regulating high‐affinity VDR‐RXR interactions with VDREs, and also in modulating 1,25(OH)2D3‐elicited transcriptional activation in target cells. J. Cell. Biochem. 85: 435–457, 2002. © 2002 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>11948698</pmid><doi>10.1002/jcb.10134</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0730-2312
ispartof Journal of cellular biochemistry, 2002, Vol.85 (2), p.435-457
issn 0730-2312
1097-4644
language eng
recordid cdi_crossref_primary_10_1002_jcb_10134
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects 1,25‐dihydroxyvitamin D3
25-dihydroxyvitamin D3
Acid Phosphatase - metabolism
Animals
Baculoviridae - genetics
Binding Sites
Blotting, Western
COS Cells
Dimerization
DNA - metabolism
DNA Primers - chemistry
Electrophoretic Mobility Shift Assay
Genes, Regulator - genetics
Genetic Vectors
heterodimerization
Humans
nuclear hormone receptor
Okadaic Acid - pharmacology
Osteocalcin - genetics
Osteocalcin - metabolism
Phosphorylation
Promoter Regions, Genetic - genetics
Rats
Receptors, Calcitriol - genetics
Receptors, Calcitriol - isolation & purification
Receptors, Calcitriol - metabolism
Receptors, Retinoic Acid - genetics
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Response Elements - genetics
Retinoid X Receptors
Transcription Factors - genetics
transcriptional activation
Tretinoin - physiology
Vitamin D - metabolism
title Isolation of baculovirus-expressed human vitamin D receptor: DNA responsive element interactions and phosphorylation of the purified receptor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T11%3A45%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isolation%20of%20baculovirus-expressed%20human%20vitamin%20D%20receptor:%20DNA%20responsive%20element%20interactions%20and%20phosphorylation%20of%20the%20purified%20receptor&rft.jtitle=Journal%20of%20cellular%20biochemistry&rft.au=Jurutka,%20Peter%20W.&rft.date=2002&rft.volume=85&rft.issue=2&rft.spage=435&rft.epage=457&rft.pages=435-457&rft.issn=0730-2312&rft.eissn=1097-4644&rft_id=info:doi/10.1002/jcb.10134&rft_dat=%3Cistex_cross%3Eark_67375_WNG_CKVKNLF6_L%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/11948698&rfr_iscdi=true