Lamellar stack formation and degradative behaviors of hydrolytically degraded poly(ε‐caprolactone) and poly(glycolide‐ε‐caprolactone) blended fibers

Electrospun fibrous mats have gained popularity in bioengineering over the past decade, but few papers detail their degradative mechanisms. To address this, blends of hydrophobic poly(ε‐caprolactone) (PCL) and hydrophilic PGA‐PCL‐PGA triblock copolymer were electrospun into aligned fibrous mats to a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2012-01, Vol.100B (1), p.274-284
Hauptverfasser: Chung, Amy S., Hwang, Ho Seong, Das, Debobrato, Zuk, Patricia, McAllister, David R., Wu, Benjamin M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 284
container_issue 1
container_start_page 274
container_title Journal of biomedical materials research. Part B, Applied biomaterials
container_volume 100B
creator Chung, Amy S.
Hwang, Ho Seong
Das, Debobrato
Zuk, Patricia
McAllister, David R.
Wu, Benjamin M.
description Electrospun fibrous mats have gained popularity in bioengineering over the past decade, but few papers detail their degradative mechanisms. To address this, blends of hydrophobic poly(ε‐caprolactone) (PCL) and hydrophilic PGA‐PCL‐PGA triblock copolymer were electrospun into aligned fibrous mats to assess the copolymers' mechanical and degradative properties. Increased hydrophilic triblock content led to enhanced morphological uniformity of fiber, tightening of fiber diameters, increased storage and Young's modulus, and decreased elongation. The corresponding decrease in hydrophobic PCL content led to faster hydrolytic degradation rate, as reflected by enhanced decrease in mass, molecular weight, and modulus loss at 25, 37, and 45°C. The activation energy for hydrolytic degradation for 15:85 PCL: triblock copolymer was approximately half that of 85:15 PCL: triblock copolymer. Detailed examination of fiber morphology and crystallinity revealed initial surface erosion followed by the evolution of crystalline lamellar stacks and bulk degradation at 37°C. Because of the high surface to volume and short diffusion length scale of the small diameter fibers, surface and bulk degradation may both contribute to the hydrolytic degradative behavior of these electrospun fibrous mats. Electrospun mats' distinct architecture that embodies high specific surface to volume and interfiber porous ultrastructures that lead to their unique degradative behaviors hold much potential for significant impact in the field of tissue engineering and controlled drug delivery. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2012.
doi_str_mv 10.1002/jbm.b.31950
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jbm_b_31950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JBM31950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2280-fb004cdb8b91292c81e9d01784def2e983dfd78eaae66bb70faffb0a387e1c33</originalsourceid><addsrcrecordid>eNp90DlOAzEUBmALgUgIVPRoShCa4CWzlRCxKogm_cjLczLBs8gzBE3HETgA1-AaHIKT4GRCKkTlZ_t7f_EjdEzwkGBMLxYiH4ohI0mAd1CfBAH1R0lMdrdzxHrooK4XDoc4YPuoRykOE4ZZH31MeA7GcOvVDZfPni5tzpusLDxeKE_BzHLl7kvwBMz5Mitt7ZXam7fKlqZtMsmNaTcOlFe5x9Ovz--3d8krJ7hsygLO1mHrv5lpZWkyBY784YSBYpWjMwG2PkR7mpsajjbnAE1vrqfjO3_ydHs_vpz4ktIY-1pgPJJKxCIhNKEyJpAoTKJ4pEBTSGKmtIpi4BzCUIgIa67dDmdxBEQyNkDnXay0ZV1b0Glls5zbNiU4XVWcuopTka4rdvqk09WLyEFt7W-nDpAOvGYG2v-y0oerxy70B4iCkKc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lamellar stack formation and degradative behaviors of hydrolytically degraded poly(ε‐caprolactone) and poly(glycolide‐ε‐caprolactone) blended fibers</title><source>MEDLINE</source><source>Wiley Blackwell Journals</source><creator>Chung, Amy S. ; Hwang, Ho Seong ; Das, Debobrato ; Zuk, Patricia ; McAllister, David R. ; Wu, Benjamin M.</creator><creatorcontrib>Chung, Amy S. ; Hwang, Ho Seong ; Das, Debobrato ; Zuk, Patricia ; McAllister, David R. ; Wu, Benjamin M.</creatorcontrib><description>Electrospun fibrous mats have gained popularity in bioengineering over the past decade, but few papers detail their degradative mechanisms. To address this, blends of hydrophobic poly(ε‐caprolactone) (PCL) and hydrophilic PGA‐PCL‐PGA triblock copolymer were electrospun into aligned fibrous mats to assess the copolymers' mechanical and degradative properties. Increased hydrophilic triblock content led to enhanced morphological uniformity of fiber, tightening of fiber diameters, increased storage and Young's modulus, and decreased elongation. The corresponding decrease in hydrophobic PCL content led to faster hydrolytic degradation rate, as reflected by enhanced decrease in mass, molecular weight, and modulus loss at 25, 37, and 45°C. The activation energy for hydrolytic degradation for 15:85 PCL: triblock copolymer was approximately half that of 85:15 PCL: triblock copolymer. Detailed examination of fiber morphology and crystallinity revealed initial surface erosion followed by the evolution of crystalline lamellar stacks and bulk degradation at 37°C. Because of the high surface to volume and short diffusion length scale of the small diameter fibers, surface and bulk degradation may both contribute to the hydrolytic degradative behavior of these electrospun fibrous mats. Electrospun mats' distinct architecture that embodies high specific surface to volume and interfiber porous ultrastructures that lead to their unique degradative behaviors hold much potential for significant impact in the field of tissue engineering and controlled drug delivery. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2012.</description><identifier>ISSN: 1552-4973</identifier><identifier>EISSN: 1552-4981</identifier><identifier>DOI: 10.1002/jbm.b.31950</identifier><identifier>PMID: 22069303</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>bulk degradation ; crystallinity ; Drug Delivery Systems - methods ; electrospinning ; Hydrolysis ; Hydrophobic and Hydrophilic Interactions ; lamellar stack formation ; Polyesters - chemistry ; surface erosion ; Tissue Engineering - methods</subject><ispartof>Journal of biomedical materials research. Part B, Applied biomaterials, 2012-01, Vol.100B (1), p.274-284</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2280-fb004cdb8b91292c81e9d01784def2e983dfd78eaae66bb70faffb0a387e1c33</citedby><cites>FETCH-LOGICAL-c2280-fb004cdb8b91292c81e9d01784def2e983dfd78eaae66bb70faffb0a387e1c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.b.31950$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.b.31950$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22069303$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chung, Amy S.</creatorcontrib><creatorcontrib>Hwang, Ho Seong</creatorcontrib><creatorcontrib>Das, Debobrato</creatorcontrib><creatorcontrib>Zuk, Patricia</creatorcontrib><creatorcontrib>McAllister, David R.</creatorcontrib><creatorcontrib>Wu, Benjamin M.</creatorcontrib><title>Lamellar stack formation and degradative behaviors of hydrolytically degraded poly(ε‐caprolactone) and poly(glycolide‐ε‐caprolactone) blended fibers</title><title>Journal of biomedical materials research. Part B, Applied biomaterials</title><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><description>Electrospun fibrous mats have gained popularity in bioengineering over the past decade, but few papers detail their degradative mechanisms. To address this, blends of hydrophobic poly(ε‐caprolactone) (PCL) and hydrophilic PGA‐PCL‐PGA triblock copolymer were electrospun into aligned fibrous mats to assess the copolymers' mechanical and degradative properties. Increased hydrophilic triblock content led to enhanced morphological uniformity of fiber, tightening of fiber diameters, increased storage and Young's modulus, and decreased elongation. The corresponding decrease in hydrophobic PCL content led to faster hydrolytic degradation rate, as reflected by enhanced decrease in mass, molecular weight, and modulus loss at 25, 37, and 45°C. The activation energy for hydrolytic degradation for 15:85 PCL: triblock copolymer was approximately half that of 85:15 PCL: triblock copolymer. Detailed examination of fiber morphology and crystallinity revealed initial surface erosion followed by the evolution of crystalline lamellar stacks and bulk degradation at 37°C. Because of the high surface to volume and short diffusion length scale of the small diameter fibers, surface and bulk degradation may both contribute to the hydrolytic degradative behavior of these electrospun fibrous mats. Electrospun mats' distinct architecture that embodies high specific surface to volume and interfiber porous ultrastructures that lead to their unique degradative behaviors hold much potential for significant impact in the field of tissue engineering and controlled drug delivery. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2012.</description><subject>bulk degradation</subject><subject>crystallinity</subject><subject>Drug Delivery Systems - methods</subject><subject>electrospinning</subject><subject>Hydrolysis</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>lamellar stack formation</subject><subject>Polyesters - chemistry</subject><subject>surface erosion</subject><subject>Tissue Engineering - methods</subject><issn>1552-4973</issn><issn>1552-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90DlOAzEUBmALgUgIVPRoShCa4CWzlRCxKogm_cjLczLBs8gzBE3HETgA1-AaHIKT4GRCKkTlZ_t7f_EjdEzwkGBMLxYiH4ohI0mAd1CfBAH1R0lMdrdzxHrooK4XDoc4YPuoRykOE4ZZH31MeA7GcOvVDZfPni5tzpusLDxeKE_BzHLl7kvwBMz5Mitt7ZXam7fKlqZtMsmNaTcOlFe5x9Ovz--3d8krJ7hsygLO1mHrv5lpZWkyBY784YSBYpWjMwG2PkR7mpsajjbnAE1vrqfjO3_ydHs_vpz4ktIY-1pgPJJKxCIhNKEyJpAoTKJ4pEBTSGKmtIpi4BzCUIgIa67dDmdxBEQyNkDnXay0ZV1b0Glls5zbNiU4XVWcuopTka4rdvqk09WLyEFt7W-nDpAOvGYG2v-y0oerxy70B4iCkKc</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Chung, Amy S.</creator><creator>Hwang, Ho Seong</creator><creator>Das, Debobrato</creator><creator>Zuk, Patricia</creator><creator>McAllister, David R.</creator><creator>Wu, Benjamin M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201201</creationdate><title>Lamellar stack formation and degradative behaviors of hydrolytically degraded poly(ε‐caprolactone) and poly(glycolide‐ε‐caprolactone) blended fibers</title><author>Chung, Amy S. ; Hwang, Ho Seong ; Das, Debobrato ; Zuk, Patricia ; McAllister, David R. ; Wu, Benjamin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2280-fb004cdb8b91292c81e9d01784def2e983dfd78eaae66bb70faffb0a387e1c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>bulk degradation</topic><topic>crystallinity</topic><topic>Drug Delivery Systems - methods</topic><topic>electrospinning</topic><topic>Hydrolysis</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>lamellar stack formation</topic><topic>Polyesters - chemistry</topic><topic>surface erosion</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chung, Amy S.</creatorcontrib><creatorcontrib>Hwang, Ho Seong</creatorcontrib><creatorcontrib>Das, Debobrato</creatorcontrib><creatorcontrib>Zuk, Patricia</creatorcontrib><creatorcontrib>McAllister, David R.</creatorcontrib><creatorcontrib>Wu, Benjamin M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chung, Amy S.</au><au>Hwang, Ho Seong</au><au>Das, Debobrato</au><au>Zuk, Patricia</au><au>McAllister, David R.</au><au>Wu, Benjamin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lamellar stack formation and degradative behaviors of hydrolytically degraded poly(ε‐caprolactone) and poly(glycolide‐ε‐caprolactone) blended fibers</atitle><jtitle>Journal of biomedical materials research. Part B, Applied biomaterials</jtitle><addtitle>J Biomed Mater Res B Appl Biomater</addtitle><date>2012-01</date><risdate>2012</risdate><volume>100B</volume><issue>1</issue><spage>274</spage><epage>284</epage><pages>274-284</pages><issn>1552-4973</issn><eissn>1552-4981</eissn><abstract>Electrospun fibrous mats have gained popularity in bioengineering over the past decade, but few papers detail their degradative mechanisms. To address this, blends of hydrophobic poly(ε‐caprolactone) (PCL) and hydrophilic PGA‐PCL‐PGA triblock copolymer were electrospun into aligned fibrous mats to assess the copolymers' mechanical and degradative properties. Increased hydrophilic triblock content led to enhanced morphological uniformity of fiber, tightening of fiber diameters, increased storage and Young's modulus, and decreased elongation. The corresponding decrease in hydrophobic PCL content led to faster hydrolytic degradation rate, as reflected by enhanced decrease in mass, molecular weight, and modulus loss at 25, 37, and 45°C. The activation energy for hydrolytic degradation for 15:85 PCL: triblock copolymer was approximately half that of 85:15 PCL: triblock copolymer. Detailed examination of fiber morphology and crystallinity revealed initial surface erosion followed by the evolution of crystalline lamellar stacks and bulk degradation at 37°C. Because of the high surface to volume and short diffusion length scale of the small diameter fibers, surface and bulk degradation may both contribute to the hydrolytic degradative behavior of these electrospun fibrous mats. Electrospun mats' distinct architecture that embodies high specific surface to volume and interfiber porous ultrastructures that lead to their unique degradative behaviors hold much potential for significant impact in the field of tissue engineering and controlled drug delivery. © 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2012.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22069303</pmid><doi>10.1002/jbm.b.31950</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1552-4973
ispartof Journal of biomedical materials research. Part B, Applied biomaterials, 2012-01, Vol.100B (1), p.274-284
issn 1552-4973
1552-4981
language eng
recordid cdi_crossref_primary_10_1002_jbm_b_31950
source MEDLINE; Wiley Blackwell Journals
subjects bulk degradation
crystallinity
Drug Delivery Systems - methods
electrospinning
Hydrolysis
Hydrophobic and Hydrophilic Interactions
lamellar stack formation
Polyesters - chemistry
surface erosion
Tissue Engineering - methods
title Lamellar stack formation and degradative behaviors of hydrolytically degraded poly(ε‐caprolactone) and poly(glycolide‐ε‐caprolactone) blended fibers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A02%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lamellar%20stack%20formation%20and%20degradative%20behaviors%20of%20hydrolytically%20degraded%20poly(%CE%B5%E2%80%90caprolactone)%20and%20poly(glycolide%E2%80%90%CE%B5%E2%80%90caprolactone)%20blended%20fibers&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20B,%20Applied%20biomaterials&rft.au=Chung,%20Amy%20S.&rft.date=2012-01&rft.volume=100B&rft.issue=1&rft.spage=274&rft.epage=284&rft.pages=274-284&rft.issn=1552-4973&rft.eissn=1552-4981&rft_id=info:doi/10.1002/jbm.b.31950&rft_dat=%3Cwiley_cross%3EJBM31950%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22069303&rfr_iscdi=true