Evaluation of hydrogels for bio-printing applications

In the United States alone, there are approximately 500,000 burn injuries that require medical treatment every year. Limitations of current treatments necessitate the development of new methods that can be applied quicker, result in faster wound regeneration, and yield skin that is cosmetically simi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research. Part A 2013-01, Vol.101A (1), p.272-284
Hauptverfasser: Murphy, Sean V., Skardal, Aleksander, Atala, Anthony
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 284
container_issue 1
container_start_page 272
container_title Journal of biomedical materials research. Part A
container_volume 101A
creator Murphy, Sean V.
Skardal, Aleksander
Atala, Anthony
description In the United States alone, there are approximately 500,000 burn injuries that require medical treatment every year. Limitations of current treatments necessitate the development of new methods that can be applied quicker, result in faster wound regeneration, and yield skin that is cosmetically similar to undamaged skin. The development of new hydrogel biomaterials and bioprinting deposition technologies has provided a platform to address this need. Herein we evaluated characteristics of twelve hydrogels to determine their suitability for bioprinting applications. We chose hydrogels that are either commercially available, or are commonly used for research purposes. We evaluated specific hydrogel properties relevant to bioprinting applications, specifically; gelation time, swelling or contraction, stability, biocompatibility and printability. Further, we described regulatory, commercial and financial aspects of each of the hydrogels. While many of the hydrogels screened may exhibit characteristics suitable for other applications, UV‐crosslinked Extracel, a hyaluronic acid‐based hydrogel, had many of the desired properties for our bioprinting application. Taken together with commercial availability, shelf life, potential for regulatory approval and ease of use, these materials hold the potential to be further developed into fast and effective wound healing treatments. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A:272–284, 2013.
doi_str_mv 10.1002/jbm.a.34326
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_jbm_a_34326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JBM34326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4326-8c6647bb58726c502e7bb13008e3a696ba6f8c3aaa490647652bedc2da1ce8283</originalsourceid><addsrcrecordid>eNp9z89PwjAUB_DGaATRk3eziycz7I-1245KACWgF4zH5q3rsDg20oLKf29hgDdPry_5vL73Reia4C7BmN7Ps0UXuixiVJygNuGchlEq-On2HaUho6looQvn5h4LzOk5alGaRiTBcRvx_heUa1iZugrqIvjY5Lae6dIFRW2DzNTh0ppqZapZAMtladROukt0VkDp9NW-dtDboD_tPYXj1-Fz72Ecqu01YaKEiOIs40lMheKYat8QhnGiGYhUZCCKRDEAiFLspeA007miORClE5qwDrpr_lW2ds7qQvpzFmA3kmC5DS99eAlyF97rm0Yv19lC50d7SOvB7R6AU1AWFipl3J-LcSoYo96Rxn2bUm_-2ylHj5PD8rCZMW6lf44zYD-liFnM5fvLUA5GEzydRj3J2C_pt4A7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evaluation of hydrogels for bio-printing applications</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Murphy, Sean V. ; Skardal, Aleksander ; Atala, Anthony</creator><creatorcontrib>Murphy, Sean V. ; Skardal, Aleksander ; Atala, Anthony</creatorcontrib><description>In the United States alone, there are approximately 500,000 burn injuries that require medical treatment every year. Limitations of current treatments necessitate the development of new methods that can be applied quicker, result in faster wound regeneration, and yield skin that is cosmetically similar to undamaged skin. The development of new hydrogel biomaterials and bioprinting deposition technologies has provided a platform to address this need. Herein we evaluated characteristics of twelve hydrogels to determine their suitability for bioprinting applications. We chose hydrogels that are either commercially available, or are commonly used for research purposes. We evaluated specific hydrogel properties relevant to bioprinting applications, specifically; gelation time, swelling or contraction, stability, biocompatibility and printability. Further, we described regulatory, commercial and financial aspects of each of the hydrogels. While many of the hydrogels screened may exhibit characteristics suitable for other applications, UV‐crosslinked Extracel, a hyaluronic acid‐based hydrogel, had many of the desired properties for our bioprinting application. Taken together with commercial availability, shelf life, potential for regulatory approval and ease of use, these materials hold the potential to be further developed into fast and effective wound healing treatments. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A:272–284, 2013.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.34326</identifier><identifier>PMID: 22941807</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; biocompatibility ; Biocompatible Materials - economics ; Biocompatible Materials - pharmacology ; Biological and medical sciences ; biomaterials ; bioprinting ; Cell Death - drug effects ; Cell Proliferation - drug effects ; gelation ; Humans ; hydrogel ; Hydrogels - pharmacology ; Hydrogels - toxicity ; Keratinocytes - cytology ; Keratinocytes - drug effects ; Lymphocytes - cytology ; Lymphocytes - drug effects ; Materials Testing - economics ; Mechanical Phenomena - drug effects ; Medical sciences ; Printing - economics ; Printing - methods ; Rats ; Social Control, Formal ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; Time Factors</subject><ispartof>Journal of biomedical materials research. Part A, 2013-01, Vol.101A (1), p.272-284</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4326-8c6647bb58726c502e7bb13008e3a696ba6f8c3aaa490647652bedc2da1ce8283</citedby><cites>FETCH-LOGICAL-c4326-8c6647bb58726c502e7bb13008e3a696ba6f8c3aaa490647652bedc2da1ce8283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.34326$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.34326$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27096332$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22941807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Murphy, Sean V.</creatorcontrib><creatorcontrib>Skardal, Aleksander</creatorcontrib><creatorcontrib>Atala, Anthony</creatorcontrib><title>Evaluation of hydrogels for bio-printing applications</title><title>Journal of biomedical materials research. Part A</title><addtitle>J. Biomed. Mater. Res</addtitle><description>In the United States alone, there are approximately 500,000 burn injuries that require medical treatment every year. Limitations of current treatments necessitate the development of new methods that can be applied quicker, result in faster wound regeneration, and yield skin that is cosmetically similar to undamaged skin. The development of new hydrogel biomaterials and bioprinting deposition technologies has provided a platform to address this need. Herein we evaluated characteristics of twelve hydrogels to determine their suitability for bioprinting applications. We chose hydrogels that are either commercially available, or are commonly used for research purposes. We evaluated specific hydrogel properties relevant to bioprinting applications, specifically; gelation time, swelling or contraction, stability, biocompatibility and printability. Further, we described regulatory, commercial and financial aspects of each of the hydrogels. While many of the hydrogels screened may exhibit characteristics suitable for other applications, UV‐crosslinked Extracel, a hyaluronic acid‐based hydrogel, had many of the desired properties for our bioprinting application. Taken together with commercial availability, shelf life, potential for regulatory approval and ease of use, these materials hold the potential to be further developed into fast and effective wound healing treatments. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A:272–284, 2013.</description><subject>Animals</subject><subject>biocompatibility</subject><subject>Biocompatible Materials - economics</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Biological and medical sciences</subject><subject>biomaterials</subject><subject>bioprinting</subject><subject>Cell Death - drug effects</subject><subject>Cell Proliferation - drug effects</subject><subject>gelation</subject><subject>Humans</subject><subject>hydrogel</subject><subject>Hydrogels - pharmacology</subject><subject>Hydrogels - toxicity</subject><subject>Keratinocytes - cytology</subject><subject>Keratinocytes - drug effects</subject><subject>Lymphocytes - cytology</subject><subject>Lymphocytes - drug effects</subject><subject>Materials Testing - economics</subject><subject>Mechanical Phenomena - drug effects</subject><subject>Medical sciences</subject><subject>Printing - economics</subject><subject>Printing - methods</subject><subject>Rats</subject><subject>Social Control, Formal</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>Time Factors</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9z89PwjAUB_DGaATRk3eziycz7I-1245KACWgF4zH5q3rsDg20oLKf29hgDdPry_5vL73Reia4C7BmN7Ps0UXuixiVJygNuGchlEq-On2HaUho6looQvn5h4LzOk5alGaRiTBcRvx_heUa1iZugrqIvjY5Lae6dIFRW2DzNTh0ppqZapZAMtladROukt0VkDp9NW-dtDboD_tPYXj1-Fz72Ecqu01YaKEiOIs40lMheKYat8QhnGiGYhUZCCKRDEAiFLspeA007miORClE5qwDrpr_lW2ds7qQvpzFmA3kmC5DS99eAlyF97rm0Yv19lC50d7SOvB7R6AU1AWFipl3J-LcSoYo96Rxn2bUm_-2ylHj5PD8rCZMW6lf44zYD-liFnM5fvLUA5GEzydRj3J2C_pt4A7</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Murphy, Sean V.</creator><creator>Skardal, Aleksander</creator><creator>Atala, Anthony</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201301</creationdate><title>Evaluation of hydrogels for bio-printing applications</title><author>Murphy, Sean V. ; Skardal, Aleksander ; Atala, Anthony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4326-8c6647bb58726c502e7bb13008e3a696ba6f8c3aaa490647652bedc2da1ce8283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>biocompatibility</topic><topic>Biocompatible Materials - economics</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Biological and medical sciences</topic><topic>biomaterials</topic><topic>bioprinting</topic><topic>Cell Death - drug effects</topic><topic>Cell Proliferation - drug effects</topic><topic>gelation</topic><topic>Humans</topic><topic>hydrogel</topic><topic>Hydrogels - pharmacology</topic><topic>Hydrogels - toxicity</topic><topic>Keratinocytes - cytology</topic><topic>Keratinocytes - drug effects</topic><topic>Lymphocytes - cytology</topic><topic>Lymphocytes - drug effects</topic><topic>Materials Testing - economics</topic><topic>Mechanical Phenomena - drug effects</topic><topic>Medical sciences</topic><topic>Printing - economics</topic><topic>Printing - methods</topic><topic>Rats</topic><topic>Social Control, Formal</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murphy, Sean V.</creatorcontrib><creatorcontrib>Skardal, Aleksander</creatorcontrib><creatorcontrib>Atala, Anthony</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murphy, Sean V.</au><au>Skardal, Aleksander</au><au>Atala, Anthony</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of hydrogels for bio-printing applications</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J. Biomed. Mater. Res</addtitle><date>2013-01</date><risdate>2013</risdate><volume>101A</volume><issue>1</issue><spage>272</spage><epage>284</epage><pages>272-284</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>In the United States alone, there are approximately 500,000 burn injuries that require medical treatment every year. Limitations of current treatments necessitate the development of new methods that can be applied quicker, result in faster wound regeneration, and yield skin that is cosmetically similar to undamaged skin. The development of new hydrogel biomaterials and bioprinting deposition technologies has provided a platform to address this need. Herein we evaluated characteristics of twelve hydrogels to determine their suitability for bioprinting applications. We chose hydrogels that are either commercially available, or are commonly used for research purposes. We evaluated specific hydrogel properties relevant to bioprinting applications, specifically; gelation time, swelling or contraction, stability, biocompatibility and printability. Further, we described regulatory, commercial and financial aspects of each of the hydrogels. While many of the hydrogels screened may exhibit characteristics suitable for other applications, UV‐crosslinked Extracel, a hyaluronic acid‐based hydrogel, had many of the desired properties for our bioprinting application. Taken together with commercial availability, shelf life, potential for regulatory approval and ease of use, these materials hold the potential to be further developed into fast and effective wound healing treatments. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 101A:272–284, 2013.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>22941807</pmid><doi>10.1002/jbm.a.34326</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1549-3296
ispartof Journal of biomedical materials research. Part A, 2013-01, Vol.101A (1), p.272-284
issn 1549-3296
1552-4965
language eng
recordid cdi_crossref_primary_10_1002_jbm_a_34326
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
biocompatibility
Biocompatible Materials - economics
Biocompatible Materials - pharmacology
Biological and medical sciences
biomaterials
bioprinting
Cell Death - drug effects
Cell Proliferation - drug effects
gelation
Humans
hydrogel
Hydrogels - pharmacology
Hydrogels - toxicity
Keratinocytes - cytology
Keratinocytes - drug effects
Lymphocytes - cytology
Lymphocytes - drug effects
Materials Testing - economics
Mechanical Phenomena - drug effects
Medical sciences
Printing - economics
Printing - methods
Rats
Social Control, Formal
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Technology. Biomaterials. Equipments
Time Factors
title Evaluation of hydrogels for bio-printing applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T00%3A34%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20hydrogels%20for%20bio-printing%20applications&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Murphy,%20Sean%20V.&rft.date=2013-01&rft.volume=101A&rft.issue=1&rft.spage=272&rft.epage=284&rft.pages=272-284&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.34326&rft_dat=%3Cwiley_cross%3EJBM34326%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/22941807&rfr_iscdi=true