Forecasting the volatility of the A ustralian dollar using high‐frequency data: D oes estimator accuracy improve forecast evaluation?

We compare forecasts of the volatility of the Australian dollar exchange rate to alternative measures of ex post volatility. We develop and apply a simple test for the improvement in the ability of loss functions to distinguish between forecasts when the quality of a volatility estimator is increase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of finance and economics 2019-07, Vol.24 (3), p.1355-1389
Hauptverfasser: Bailey, George, Steeley, James M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1389
container_issue 3
container_start_page 1355
container_title International journal of finance and economics
container_volume 24
creator Bailey, George
Steeley, James M.
description We compare forecasts of the volatility of the Australian dollar exchange rate to alternative measures of ex post volatility. We develop and apply a simple test for the improvement in the ability of loss functions to distinguish between forecasts when the quality of a volatility estimator is increased. We find that both realized variance and the daily high–low range provide a significant improvement in loss function convergence relative to squared returns. We find that a model of stochastic volatility provides the best forecasts for models that use daily data, and the GARCH(1,1) model provides the best forecast using high‐frequency data.
doi_str_mv 10.1002/ijfe.1723
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_ijfe_1723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_ijfe_1723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c743-c452a9e2e0356d5b0df809fd17a362c8fdf0790512e360c78033e0ea377a21693</originalsourceid><addsrcrecordid>eNotkDFPwzAQhS0EEqUw8A-8MgTOcRPHLKgqFJAqsXSPDufcpkrjYjuVurGx8hv5JSTQ6U7vTu89fYxdC7gVAOldvbF0K1QqT9hIgNaJEFlxOuwqT7QEdc4uQtgAQJ4pGLGvufNkMMS6XfG4Jr53Dca6qeOBO_unTHkXosemxpZXrmnQ98Lwvq5X65_Pb-vpo6PWHHiFEe_5I3cUOPWWW4zOczSm89if6-3Ouz1xe4zktMem69Nc-3DJziw2ga6Oc8yW86fl7CVZvD2_zqaLxKiJTMwkS1FTSiCzvMreobIFaFsJhTJPTWErC0pDJlKSORhVgJQEhFIpTEWu5Zjd_Nsa70LwZMud72v6QymgHACWA8ByACh_AS0XZ1k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Forecasting the volatility of the A ustralian dollar using high‐frequency data: D oes estimator accuracy improve forecast evaluation?</title><source>Business Source Complete</source><source>Wiley Online Library All Journals</source><creator>Bailey, George ; Steeley, James M.</creator><creatorcontrib>Bailey, George ; Steeley, James M.</creatorcontrib><description>We compare forecasts of the volatility of the Australian dollar exchange rate to alternative measures of ex post volatility. We develop and apply a simple test for the improvement in the ability of loss functions to distinguish between forecasts when the quality of a volatility estimator is increased. We find that both realized variance and the daily high–low range provide a significant improvement in loss function convergence relative to squared returns. We find that a model of stochastic volatility provides the best forecasts for models that use daily data, and the GARCH(1,1) model provides the best forecast using high‐frequency data.</description><identifier>ISSN: 1076-9307</identifier><identifier>EISSN: 1099-1158</identifier><identifier>DOI: 10.1002/ijfe.1723</identifier><language>eng</language><ispartof>International journal of finance and economics, 2019-07, Vol.24 (3), p.1355-1389</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c743-c452a9e2e0356d5b0df809fd17a362c8fdf0790512e360c78033e0ea377a21693</citedby><cites>FETCH-LOGICAL-c743-c452a9e2e0356d5b0df809fd17a362c8fdf0790512e360c78033e0ea377a21693</cites><orcidid>0000-0003-0345-5089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Bailey, George</creatorcontrib><creatorcontrib>Steeley, James M.</creatorcontrib><title>Forecasting the volatility of the A ustralian dollar using high‐frequency data: D oes estimator accuracy improve forecast evaluation?</title><title>International journal of finance and economics</title><description>We compare forecasts of the volatility of the Australian dollar exchange rate to alternative measures of ex post volatility. We develop and apply a simple test for the improvement in the ability of loss functions to distinguish between forecasts when the quality of a volatility estimator is increased. We find that both realized variance and the daily high–low range provide a significant improvement in loss function convergence relative to squared returns. We find that a model of stochastic volatility provides the best forecasts for models that use daily data, and the GARCH(1,1) model provides the best forecast using high‐frequency data.</description><issn>1076-9307</issn><issn>1099-1158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkDFPwzAQhS0EEqUw8A-8MgTOcRPHLKgqFJAqsXSPDufcpkrjYjuVurGx8hv5JSTQ6U7vTu89fYxdC7gVAOldvbF0K1QqT9hIgNaJEFlxOuwqT7QEdc4uQtgAQJ4pGLGvufNkMMS6XfG4Jr53Dca6qeOBO_unTHkXosemxpZXrmnQ98Lwvq5X65_Pb-vpo6PWHHiFEe_5I3cUOPWWW4zOczSm89if6-3Ouz1xe4zktMem69Nc-3DJziw2ga6Oc8yW86fl7CVZvD2_zqaLxKiJTMwkS1FTSiCzvMreobIFaFsJhTJPTWErC0pDJlKSORhVgJQEhFIpTEWu5Zjd_Nsa70LwZMud72v6QymgHACWA8ByACh_AS0XZ1k</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Bailey, George</creator><creator>Steeley, James M.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0345-5089</orcidid></search><sort><creationdate>201907</creationdate><title>Forecasting the volatility of the A ustralian dollar using high‐frequency data: D oes estimator accuracy improve forecast evaluation?</title><author>Bailey, George ; Steeley, James M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c743-c452a9e2e0356d5b0df809fd17a362c8fdf0790512e360c78033e0ea377a21693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bailey, George</creatorcontrib><creatorcontrib>Steeley, James M.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of finance and economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bailey, George</au><au>Steeley, James M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting the volatility of the A ustralian dollar using high‐frequency data: D oes estimator accuracy improve forecast evaluation?</atitle><jtitle>International journal of finance and economics</jtitle><date>2019-07</date><risdate>2019</risdate><volume>24</volume><issue>3</issue><spage>1355</spage><epage>1389</epage><pages>1355-1389</pages><issn>1076-9307</issn><eissn>1099-1158</eissn><abstract>We compare forecasts of the volatility of the Australian dollar exchange rate to alternative measures of ex post volatility. We develop and apply a simple test for the improvement in the ability of loss functions to distinguish between forecasts when the quality of a volatility estimator is increased. We find that both realized variance and the daily high–low range provide a significant improvement in loss function convergence relative to squared returns. We find that a model of stochastic volatility provides the best forecasts for models that use daily data, and the GARCH(1,1) model provides the best forecast using high‐frequency data.</abstract><doi>10.1002/ijfe.1723</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0003-0345-5089</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1076-9307
ispartof International journal of finance and economics, 2019-07, Vol.24 (3), p.1355-1389
issn 1076-9307
1099-1158
language eng
recordid cdi_crossref_primary_10_1002_ijfe_1723
source Business Source Complete; Wiley Online Library All Journals
title Forecasting the volatility of the A ustralian dollar using high‐frequency data: D oes estimator accuracy improve forecast evaluation?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A52%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20the%20volatility%20of%20the%20A%20ustralian%20dollar%20using%20high%E2%80%90frequency%20data:%20D%20oes%20estimator%20accuracy%20improve%20forecast%20evaluation?&rft.jtitle=International%20journal%20of%20finance%20and%20economics&rft.au=Bailey,%20George&rft.date=2019-07&rft.volume=24&rft.issue=3&rft.spage=1355&rft.epage=1389&rft.pages=1355-1389&rft.issn=1076-9307&rft.eissn=1099-1158&rft_id=info:doi/10.1002/ijfe.1723&rft_dat=%3Ccrossref%3E10_1002_ijfe_1723%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true