Forecasting the volatility of the A ustralian dollar using high‐frequency data: D oes estimator accuracy improve forecast evaluation?
We compare forecasts of the volatility of the Australian dollar exchange rate to alternative measures of ex post volatility. We develop and apply a simple test for the improvement in the ability of loss functions to distinguish between forecasts when the quality of a volatility estimator is increase...
Gespeichert in:
Veröffentlicht in: | International journal of finance and economics 2019-07, Vol.24 (3), p.1355-1389 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1389 |
---|---|
container_issue | 3 |
container_start_page | 1355 |
container_title | International journal of finance and economics |
container_volume | 24 |
creator | Bailey, George Steeley, James M. |
description | We compare forecasts of the volatility of the Australian dollar exchange rate to alternative measures of ex post volatility. We develop and apply a simple test for the improvement in the ability of loss functions to distinguish between forecasts when the quality of a volatility estimator is increased. We find that both realized variance and the daily high–low range provide a significant improvement in loss function convergence relative to squared returns. We find that a model of stochastic volatility provides the best forecasts for models that use daily data, and the GARCH(1,1) model provides the best forecast using high‐frequency data. |
doi_str_mv | 10.1002/ijfe.1723 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_ijfe_1723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_ijfe_1723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c743-c452a9e2e0356d5b0df809fd17a362c8fdf0790512e360c78033e0ea377a21693</originalsourceid><addsrcrecordid>eNotkDFPwzAQhS0EEqUw8A-8MgTOcRPHLKgqFJAqsXSPDufcpkrjYjuVurGx8hv5JSTQ6U7vTu89fYxdC7gVAOldvbF0K1QqT9hIgNaJEFlxOuwqT7QEdc4uQtgAQJ4pGLGvufNkMMS6XfG4Jr53Dca6qeOBO_unTHkXosemxpZXrmnQ98Lwvq5X65_Pb-vpo6PWHHiFEe_5I3cUOPWWW4zOczSm89if6-3Ouz1xe4zktMem69Nc-3DJziw2ga6Oc8yW86fl7CVZvD2_zqaLxKiJTMwkS1FTSiCzvMreobIFaFsJhTJPTWErC0pDJlKSORhVgJQEhFIpTEWu5Zjd_Nsa70LwZMud72v6QymgHACWA8ByACh_AS0XZ1k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Forecasting the volatility of the A ustralian dollar using high‐frequency data: D oes estimator accuracy improve forecast evaluation?</title><source>Business Source Complete</source><source>Wiley Online Library All Journals</source><creator>Bailey, George ; Steeley, James M.</creator><creatorcontrib>Bailey, George ; Steeley, James M.</creatorcontrib><description>We compare forecasts of the volatility of the Australian dollar exchange rate to alternative measures of ex post volatility. We develop and apply a simple test for the improvement in the ability of loss functions to distinguish between forecasts when the quality of a volatility estimator is increased. We find that both realized variance and the daily high–low range provide a significant improvement in loss function convergence relative to squared returns. We find that a model of stochastic volatility provides the best forecasts for models that use daily data, and the GARCH(1,1) model provides the best forecast using high‐frequency data.</description><identifier>ISSN: 1076-9307</identifier><identifier>EISSN: 1099-1158</identifier><identifier>DOI: 10.1002/ijfe.1723</identifier><language>eng</language><ispartof>International journal of finance and economics, 2019-07, Vol.24 (3), p.1355-1389</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c743-c452a9e2e0356d5b0df809fd17a362c8fdf0790512e360c78033e0ea377a21693</citedby><cites>FETCH-LOGICAL-c743-c452a9e2e0356d5b0df809fd17a362c8fdf0790512e360c78033e0ea377a21693</cites><orcidid>0000-0003-0345-5089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Bailey, George</creatorcontrib><creatorcontrib>Steeley, James M.</creatorcontrib><title>Forecasting the volatility of the A ustralian dollar using high‐frequency data: D oes estimator accuracy improve forecast evaluation?</title><title>International journal of finance and economics</title><description>We compare forecasts of the volatility of the Australian dollar exchange rate to alternative measures of ex post volatility. We develop and apply a simple test for the improvement in the ability of loss functions to distinguish between forecasts when the quality of a volatility estimator is increased. We find that both realized variance and the daily high–low range provide a significant improvement in loss function convergence relative to squared returns. We find that a model of stochastic volatility provides the best forecasts for models that use daily data, and the GARCH(1,1) model provides the best forecast using high‐frequency data.</description><issn>1076-9307</issn><issn>1099-1158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkDFPwzAQhS0EEqUw8A-8MgTOcRPHLKgqFJAqsXSPDufcpkrjYjuVurGx8hv5JSTQ6U7vTu89fYxdC7gVAOldvbF0K1QqT9hIgNaJEFlxOuwqT7QEdc4uQtgAQJ4pGLGvufNkMMS6XfG4Jr53Dca6qeOBO_unTHkXosemxpZXrmnQ98Lwvq5X65_Pb-vpo6PWHHiFEe_5I3cUOPWWW4zOczSm89if6-3Ouz1xe4zktMem69Nc-3DJziw2ga6Oc8yW86fl7CVZvD2_zqaLxKiJTMwkS1FTSiCzvMreobIFaFsJhTJPTWErC0pDJlKSORhVgJQEhFIpTEWu5Zjd_Nsa70LwZMud72v6QymgHACWA8ByACh_AS0XZ1k</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Bailey, George</creator><creator>Steeley, James M.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0345-5089</orcidid></search><sort><creationdate>201907</creationdate><title>Forecasting the volatility of the A ustralian dollar using high‐frequency data: D oes estimator accuracy improve forecast evaluation?</title><author>Bailey, George ; Steeley, James M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c743-c452a9e2e0356d5b0df809fd17a362c8fdf0790512e360c78033e0ea377a21693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bailey, George</creatorcontrib><creatorcontrib>Steeley, James M.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of finance and economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bailey, George</au><au>Steeley, James M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting the volatility of the A ustralian dollar using high‐frequency data: D oes estimator accuracy improve forecast evaluation?</atitle><jtitle>International journal of finance and economics</jtitle><date>2019-07</date><risdate>2019</risdate><volume>24</volume><issue>3</issue><spage>1355</spage><epage>1389</epage><pages>1355-1389</pages><issn>1076-9307</issn><eissn>1099-1158</eissn><abstract>We compare forecasts of the volatility of the Australian dollar exchange rate to alternative measures of ex post volatility. We develop and apply a simple test for the improvement in the ability of loss functions to distinguish between forecasts when the quality of a volatility estimator is increased. We find that both realized variance and the daily high–low range provide a significant improvement in loss function convergence relative to squared returns. We find that a model of stochastic volatility provides the best forecasts for models that use daily data, and the GARCH(1,1) model provides the best forecast using high‐frequency data.</abstract><doi>10.1002/ijfe.1723</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0003-0345-5089</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-9307 |
ispartof | International journal of finance and economics, 2019-07, Vol.24 (3), p.1355-1389 |
issn | 1076-9307 1099-1158 |
language | eng |
recordid | cdi_crossref_primary_10_1002_ijfe_1723 |
source | Business Source Complete; Wiley Online Library All Journals |
title | Forecasting the volatility of the A ustralian dollar using high‐frequency data: D oes estimator accuracy improve forecast evaluation? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A52%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20the%20volatility%20of%20the%20A%20ustralian%20dollar%20using%20high%E2%80%90frequency%20data:%20D%20oes%20estimator%20accuracy%20improve%20forecast%20evaluation?&rft.jtitle=International%20journal%20of%20finance%20and%20economics&rft.au=Bailey,%20George&rft.date=2019-07&rft.volume=24&rft.issue=3&rft.spage=1355&rft.epage=1389&rft.pages=1355-1389&rft.issn=1076-9307&rft.eissn=1099-1158&rft_id=info:doi/10.1002/ijfe.1723&rft_dat=%3Ccrossref%3E10_1002_ijfe_1723%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |