Construction of dendritic Pt–Pd bimetallic nanotubular heterostructure for advanced oxygen reduction

Compositions and morphologies of Pt‐based electrocatalysts have great impact on the electrocatalytic activity and stability of oxygen reduction reaction (ORR). Herein, we report a novel design of one‐dimensional (1D) Pt–Pd dendritic nanotubular heterostructures (DTHs) by controlling the degree of Pt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Interdisciplinary materials (Print) 2024-11, Vol.3 (6), p.907-918
Hauptverfasser: Wang, Mingwei, Hu, Zhiyi, Lv, Jieheng, Yin, Zhiwen, Xu, Zhewei, Liu, Jingfeng, Feng, Shihao, Wang, Xiaoqian, He, Jiazhen, Luo, Sicheng, Zhao, Dafu, Li, Hang, Luo, Xuemin, Liu, Qi, Liu, Damin, Su, Baolian, Zhao, Dongyuan, Liu, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 918
container_issue 6
container_start_page 907
container_title Interdisciplinary materials (Print)
container_volume 3
creator Wang, Mingwei
Hu, Zhiyi
Lv, Jieheng
Yin, Zhiwen
Xu, Zhewei
Liu, Jingfeng
Feng, Shihao
Wang, Xiaoqian
He, Jiazhen
Luo, Sicheng
Zhao, Dafu
Li, Hang
Luo, Xuemin
Liu, Qi
Liu, Damin
Su, Baolian
Zhao, Dongyuan
Liu, Yong
description Compositions and morphologies of Pt‐based electrocatalysts have great impact on the electrocatalytic activity and stability of oxygen reduction reaction (ORR). Herein, we report a novel design of one‐dimensional (1D) Pt–Pd dendritic nanotubular heterostructures (DTHs) by controlling the degree of Pt2+‐Pt reduction reaction and Pd‐Pt galvanic replacement reaction with uniform Pd nanowires as sacrificial templates. The obtained Pt–Pd bimetallic DTHs catalyst exhibited uniform and dense Pt dendritic nanobranches on the surface of 1D hollow Pt–Pd alloy nanotubes, possessing superior catalytic activity for ORR compared to state‐of‐the‐art commercial Pt/C catalysts. Typically, the Pt4Pd DTHs catalyst showed efficient mass activity (MA, 1.05 A mgPt−1) and specific activity (SA, 1.25 mA cmPt−2) at 0.9 V (vs. RHE), and the catalyst exhibited high stability with 90.4% MA retention after 20 000 potential cycles. The Pt–Pd bimetallic DTHs configuration combines the advantages of 1D hollow nanostructures and dense Pt dendritic nanobranches, which results in rich electrochemical active surface sites, fast charge transport, and multiple dendritic anchoring points contact on carbon support, thus boosting its catalytic activity and stability towards electrocatalysis. One‐dimensional (1D) Pt–Pd dendritic nanotubular heterostructures (DTHs) are designed by controlling the degree of Pt2+‐Pt reduction reaction and Pd–Pt galvanic replacement reaction with uniform Pd nanowires as sacrificial templates. The Pt4Pd DTHs catalyst shows the highest catalyst activity and excellent stability in oxygen reduction reaction.
doi_str_mv 10.1002/idm2.12212
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_idm2_12212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>IDM212212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1982-73f7098126cb843742ff2c7b5b36689c9bf30baec7446e06d36124d2b26bd9103</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOIyz8QmyFjrmpDFpljLeBhRnoeCu5KqRTiNpqs7Od_ANfRI7Vly6OofD9_8cPoQOgcyBEHoc7JrOgVKgO2hCBRcFY_Cw-7cT2EezrnsmAywBJJQT5Bex7XLqTQ6xxdFj61qbQg4Gr_LXx-fKYh3WLqumGU6tamPudd-ohJ9cdimO2T457GPCyr6q1jiL4_vm0bU4OTs2H6A9r5rOzX7nFN1fnN8trorr28vl4vS6MCArWojSCyIroNzoipWCUe-pEfpEl5xX0kjtS6KVM4Ix7gi3JQfKLNWUayuBlFN0NPaa4bUuOV-_pLBWaVMDqbeS6q2k-kfSAMMIv4XGbf4h6-XZDR0z35Qra9s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Construction of dendritic Pt–Pd bimetallic nanotubular heterostructure for advanced oxygen reduction</title><source>Wiley-Blackwell Open Access Collection</source><source>Wiley Online Library Journals</source><source>DOAJ Directory of Open Access Journals</source><creator>Wang, Mingwei ; Hu, Zhiyi ; Lv, Jieheng ; Yin, Zhiwen ; Xu, Zhewei ; Liu, Jingfeng ; Feng, Shihao ; Wang, Xiaoqian ; He, Jiazhen ; Luo, Sicheng ; Zhao, Dafu ; Li, Hang ; Luo, Xuemin ; Liu, Qi ; Liu, Damin ; Su, Baolian ; Zhao, Dongyuan ; Liu, Yong</creator><creatorcontrib>Wang, Mingwei ; Hu, Zhiyi ; Lv, Jieheng ; Yin, Zhiwen ; Xu, Zhewei ; Liu, Jingfeng ; Feng, Shihao ; Wang, Xiaoqian ; He, Jiazhen ; Luo, Sicheng ; Zhao, Dafu ; Li, Hang ; Luo, Xuemin ; Liu, Qi ; Liu, Damin ; Su, Baolian ; Zhao, Dongyuan ; Liu, Yong</creatorcontrib><description>Compositions and morphologies of Pt‐based electrocatalysts have great impact on the electrocatalytic activity and stability of oxygen reduction reaction (ORR). Herein, we report a novel design of one‐dimensional (1D) Pt–Pd dendritic nanotubular heterostructures (DTHs) by controlling the degree of Pt2+‐Pt reduction reaction and Pd‐Pt galvanic replacement reaction with uniform Pd nanowires as sacrificial templates. The obtained Pt–Pd bimetallic DTHs catalyst exhibited uniform and dense Pt dendritic nanobranches on the surface of 1D hollow Pt–Pd alloy nanotubes, possessing superior catalytic activity for ORR compared to state‐of‐the‐art commercial Pt/C catalysts. Typically, the Pt4Pd DTHs catalyst showed efficient mass activity (MA, 1.05 A mgPt−1) and specific activity (SA, 1.25 mA cmPt−2) at 0.9 V (vs. RHE), and the catalyst exhibited high stability with 90.4% MA retention after 20 000 potential cycles. The Pt–Pd bimetallic DTHs configuration combines the advantages of 1D hollow nanostructures and dense Pt dendritic nanobranches, which results in rich electrochemical active surface sites, fast charge transport, and multiple dendritic anchoring points contact on carbon support, thus boosting its catalytic activity and stability towards electrocatalysis. One‐dimensional (1D) Pt–Pd dendritic nanotubular heterostructures (DTHs) are designed by controlling the degree of Pt2+‐Pt reduction reaction and Pd–Pt galvanic replacement reaction with uniform Pd nanowires as sacrificial templates. The Pt4Pd DTHs catalyst shows the highest catalyst activity and excellent stability in oxygen reduction reaction.</description><identifier>ISSN: 2767-4401</identifier><identifier>EISSN: 2767-441X</identifier><identifier>DOI: 10.1002/idm2.12212</identifier><language>eng</language><subject>dendritic hollow heterostructures ; electrocatalysis ; one‐dimensional nanowires ; oxygen reduction ; proton exchange membrane fuel cells</subject><ispartof>Interdisciplinary materials (Print), 2024-11, Vol.3 (6), p.907-918</ispartof><rights>2024 The Author(s). published by Wuhan University of Technology and John Wiley &amp; Sons Australia, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1982-73f7098126cb843742ff2c7b5b36689c9bf30baec7446e06d36124d2b26bd9103</cites><orcidid>0000-0002-1469-0757 ; 0000-0001-8474-0652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fidm2.12212$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fidm2.12212$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,1416,11561,27923,27924,45573,45574,46051,46475</link.rule.ids></links><search><creatorcontrib>Wang, Mingwei</creatorcontrib><creatorcontrib>Hu, Zhiyi</creatorcontrib><creatorcontrib>Lv, Jieheng</creatorcontrib><creatorcontrib>Yin, Zhiwen</creatorcontrib><creatorcontrib>Xu, Zhewei</creatorcontrib><creatorcontrib>Liu, Jingfeng</creatorcontrib><creatorcontrib>Feng, Shihao</creatorcontrib><creatorcontrib>Wang, Xiaoqian</creatorcontrib><creatorcontrib>He, Jiazhen</creatorcontrib><creatorcontrib>Luo, Sicheng</creatorcontrib><creatorcontrib>Zhao, Dafu</creatorcontrib><creatorcontrib>Li, Hang</creatorcontrib><creatorcontrib>Luo, Xuemin</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Liu, Damin</creatorcontrib><creatorcontrib>Su, Baolian</creatorcontrib><creatorcontrib>Zhao, Dongyuan</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><title>Construction of dendritic Pt–Pd bimetallic nanotubular heterostructure for advanced oxygen reduction</title><title>Interdisciplinary materials (Print)</title><description>Compositions and morphologies of Pt‐based electrocatalysts have great impact on the electrocatalytic activity and stability of oxygen reduction reaction (ORR). Herein, we report a novel design of one‐dimensional (1D) Pt–Pd dendritic nanotubular heterostructures (DTHs) by controlling the degree of Pt2+‐Pt reduction reaction and Pd‐Pt galvanic replacement reaction with uniform Pd nanowires as sacrificial templates. The obtained Pt–Pd bimetallic DTHs catalyst exhibited uniform and dense Pt dendritic nanobranches on the surface of 1D hollow Pt–Pd alloy nanotubes, possessing superior catalytic activity for ORR compared to state‐of‐the‐art commercial Pt/C catalysts. Typically, the Pt4Pd DTHs catalyst showed efficient mass activity (MA, 1.05 A mgPt−1) and specific activity (SA, 1.25 mA cmPt−2) at 0.9 V (vs. RHE), and the catalyst exhibited high stability with 90.4% MA retention after 20 000 potential cycles. The Pt–Pd bimetallic DTHs configuration combines the advantages of 1D hollow nanostructures and dense Pt dendritic nanobranches, which results in rich electrochemical active surface sites, fast charge transport, and multiple dendritic anchoring points contact on carbon support, thus boosting its catalytic activity and stability towards electrocatalysis. One‐dimensional (1D) Pt–Pd dendritic nanotubular heterostructures (DTHs) are designed by controlling the degree of Pt2+‐Pt reduction reaction and Pd–Pt galvanic replacement reaction with uniform Pd nanowires as sacrificial templates. The Pt4Pd DTHs catalyst shows the highest catalyst activity and excellent stability in oxygen reduction reaction.</description><subject>dendritic hollow heterostructures</subject><subject>electrocatalysis</subject><subject>one‐dimensional nanowires</subject><subject>oxygen reduction</subject><subject>proton exchange membrane fuel cells</subject><issn>2767-4401</issn><issn>2767-441X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kMtKxDAUhoMoOIyz8QmyFjrmpDFpljLeBhRnoeCu5KqRTiNpqs7Od_ANfRI7Vly6OofD9_8cPoQOgcyBEHoc7JrOgVKgO2hCBRcFY_Cw-7cT2EezrnsmAywBJJQT5Bex7XLqTQ6xxdFj61qbQg4Gr_LXx-fKYh3WLqumGU6tamPudd-ohJ9cdimO2T457GPCyr6q1jiL4_vm0bU4OTs2H6A9r5rOzX7nFN1fnN8trorr28vl4vS6MCArWojSCyIroNzoipWCUe-pEfpEl5xX0kjtS6KVM4Ix7gi3JQfKLNWUayuBlFN0NPaa4bUuOV-_pLBWaVMDqbeS6q2k-kfSAMMIv4XGbf4h6-XZDR0z35Qra9s</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Wang, Mingwei</creator><creator>Hu, Zhiyi</creator><creator>Lv, Jieheng</creator><creator>Yin, Zhiwen</creator><creator>Xu, Zhewei</creator><creator>Liu, Jingfeng</creator><creator>Feng, Shihao</creator><creator>Wang, Xiaoqian</creator><creator>He, Jiazhen</creator><creator>Luo, Sicheng</creator><creator>Zhao, Dafu</creator><creator>Li, Hang</creator><creator>Luo, Xuemin</creator><creator>Liu, Qi</creator><creator>Liu, Damin</creator><creator>Su, Baolian</creator><creator>Zhao, Dongyuan</creator><creator>Liu, Yong</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1469-0757</orcidid><orcidid>https://orcid.org/0000-0001-8474-0652</orcidid></search><sort><creationdate>202411</creationdate><title>Construction of dendritic Pt–Pd bimetallic nanotubular heterostructure for advanced oxygen reduction</title><author>Wang, Mingwei ; Hu, Zhiyi ; Lv, Jieheng ; Yin, Zhiwen ; Xu, Zhewei ; Liu, Jingfeng ; Feng, Shihao ; Wang, Xiaoqian ; He, Jiazhen ; Luo, Sicheng ; Zhao, Dafu ; Li, Hang ; Luo, Xuemin ; Liu, Qi ; Liu, Damin ; Su, Baolian ; Zhao, Dongyuan ; Liu, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1982-73f7098126cb843742ff2c7b5b36689c9bf30baec7446e06d36124d2b26bd9103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>dendritic hollow heterostructures</topic><topic>electrocatalysis</topic><topic>one‐dimensional nanowires</topic><topic>oxygen reduction</topic><topic>proton exchange membrane fuel cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Mingwei</creatorcontrib><creatorcontrib>Hu, Zhiyi</creatorcontrib><creatorcontrib>Lv, Jieheng</creatorcontrib><creatorcontrib>Yin, Zhiwen</creatorcontrib><creatorcontrib>Xu, Zhewei</creatorcontrib><creatorcontrib>Liu, Jingfeng</creatorcontrib><creatorcontrib>Feng, Shihao</creatorcontrib><creatorcontrib>Wang, Xiaoqian</creatorcontrib><creatorcontrib>He, Jiazhen</creatorcontrib><creatorcontrib>Luo, Sicheng</creatorcontrib><creatorcontrib>Zhao, Dafu</creatorcontrib><creatorcontrib>Li, Hang</creatorcontrib><creatorcontrib>Luo, Xuemin</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Liu, Damin</creatorcontrib><creatorcontrib>Su, Baolian</creatorcontrib><creatorcontrib>Zhao, Dongyuan</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Free Archive</collection><collection>CrossRef</collection><jtitle>Interdisciplinary materials (Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Mingwei</au><au>Hu, Zhiyi</au><au>Lv, Jieheng</au><au>Yin, Zhiwen</au><au>Xu, Zhewei</au><au>Liu, Jingfeng</au><au>Feng, Shihao</au><au>Wang, Xiaoqian</au><au>He, Jiazhen</au><au>Luo, Sicheng</au><au>Zhao, Dafu</au><au>Li, Hang</au><au>Luo, Xuemin</au><au>Liu, Qi</au><au>Liu, Damin</au><au>Su, Baolian</au><au>Zhao, Dongyuan</au><au>Liu, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of dendritic Pt–Pd bimetallic nanotubular heterostructure for advanced oxygen reduction</atitle><jtitle>Interdisciplinary materials (Print)</jtitle><date>2024-11</date><risdate>2024</risdate><volume>3</volume><issue>6</issue><spage>907</spage><epage>918</epage><pages>907-918</pages><issn>2767-4401</issn><eissn>2767-441X</eissn><abstract>Compositions and morphologies of Pt‐based electrocatalysts have great impact on the electrocatalytic activity and stability of oxygen reduction reaction (ORR). Herein, we report a novel design of one‐dimensional (1D) Pt–Pd dendritic nanotubular heterostructures (DTHs) by controlling the degree of Pt2+‐Pt reduction reaction and Pd‐Pt galvanic replacement reaction with uniform Pd nanowires as sacrificial templates. The obtained Pt–Pd bimetallic DTHs catalyst exhibited uniform and dense Pt dendritic nanobranches on the surface of 1D hollow Pt–Pd alloy nanotubes, possessing superior catalytic activity for ORR compared to state‐of‐the‐art commercial Pt/C catalysts. Typically, the Pt4Pd DTHs catalyst showed efficient mass activity (MA, 1.05 A mgPt−1) and specific activity (SA, 1.25 mA cmPt−2) at 0.9 V (vs. RHE), and the catalyst exhibited high stability with 90.4% MA retention after 20 000 potential cycles. The Pt–Pd bimetallic DTHs configuration combines the advantages of 1D hollow nanostructures and dense Pt dendritic nanobranches, which results in rich electrochemical active surface sites, fast charge transport, and multiple dendritic anchoring points contact on carbon support, thus boosting its catalytic activity and stability towards electrocatalysis. One‐dimensional (1D) Pt–Pd dendritic nanotubular heterostructures (DTHs) are designed by controlling the degree of Pt2+‐Pt reduction reaction and Pd–Pt galvanic replacement reaction with uniform Pd nanowires as sacrificial templates. The Pt4Pd DTHs catalyst shows the highest catalyst activity and excellent stability in oxygen reduction reaction.</abstract><doi>10.1002/idm2.12212</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1469-0757</orcidid><orcidid>https://orcid.org/0000-0001-8474-0652</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2767-4401
ispartof Interdisciplinary materials (Print), 2024-11, Vol.3 (6), p.907-918
issn 2767-4401
2767-441X
language eng
recordid cdi_crossref_primary_10_1002_idm2_12212
source Wiley-Blackwell Open Access Collection; Wiley Online Library Journals; DOAJ Directory of Open Access Journals
subjects dendritic hollow heterostructures
electrocatalysis
one‐dimensional nanowires
oxygen reduction
proton exchange membrane fuel cells
title Construction of dendritic Pt–Pd bimetallic nanotubular heterostructure for advanced oxygen reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A19%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20dendritic%20Pt%E2%80%93Pd%20bimetallic%20nanotubular%20heterostructure%20for%20advanced%20oxygen%20reduction&rft.jtitle=Interdisciplinary%20materials%20(Print)&rft.au=Wang,%20Mingwei&rft.date=2024-11&rft.volume=3&rft.issue=6&rft.spage=907&rft.epage=918&rft.pages=907-918&rft.issn=2767-4401&rft.eissn=2767-441X&rft_id=info:doi/10.1002/idm2.12212&rft_dat=%3Cwiley_cross%3EIDM212212%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true