Construction of dendritic Pt–Pd bimetallic nanotubular heterostructure for advanced oxygen reduction
Compositions and morphologies of Pt‐based electrocatalysts have great impact on the electrocatalytic activity and stability of oxygen reduction reaction (ORR). Herein, we report a novel design of one‐dimensional (1D) Pt–Pd dendritic nanotubular heterostructures (DTHs) by controlling the degree of Pt...
Gespeichert in:
Veröffentlicht in: | Interdisciplinary materials (Print) 2024-11, Vol.3 (6), p.907-918 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 918 |
---|---|
container_issue | 6 |
container_start_page | 907 |
container_title | Interdisciplinary materials (Print) |
container_volume | 3 |
creator | Wang, Mingwei Hu, Zhiyi Lv, Jieheng Yin, Zhiwen Xu, Zhewei Liu, Jingfeng Feng, Shihao Wang, Xiaoqian He, Jiazhen Luo, Sicheng Zhao, Dafu Li, Hang Luo, Xuemin Liu, Qi Liu, Damin Su, Baolian Zhao, Dongyuan Liu, Yong |
description | Compositions and morphologies of Pt‐based electrocatalysts have great impact on the electrocatalytic activity and stability of oxygen reduction reaction (ORR). Herein, we report a novel design of one‐dimensional (1D) Pt–Pd dendritic nanotubular heterostructures (DTHs) by controlling the degree of Pt2+‐Pt reduction reaction and Pd‐Pt galvanic replacement reaction with uniform Pd nanowires as sacrificial templates. The obtained Pt–Pd bimetallic DTHs catalyst exhibited uniform and dense Pt dendritic nanobranches on the surface of 1D hollow Pt–Pd alloy nanotubes, possessing superior catalytic activity for ORR compared to state‐of‐the‐art commercial Pt/C catalysts. Typically, the Pt4Pd DTHs catalyst showed efficient mass activity (MA, 1.05 A mgPt−1) and specific activity (SA, 1.25 mA cmPt−2) at 0.9 V (vs. RHE), and the catalyst exhibited high stability with 90.4% MA retention after 20 000 potential cycles. The Pt–Pd bimetallic DTHs configuration combines the advantages of 1D hollow nanostructures and dense Pt dendritic nanobranches, which results in rich electrochemical active surface sites, fast charge transport, and multiple dendritic anchoring points contact on carbon support, thus boosting its catalytic activity and stability towards electrocatalysis.
One‐dimensional (1D) Pt–Pd dendritic nanotubular heterostructures (DTHs) are designed by controlling the degree of Pt2+‐Pt reduction reaction and Pd–Pt galvanic replacement reaction with uniform Pd nanowires as sacrificial templates. The Pt4Pd DTHs catalyst shows the highest catalyst activity and excellent stability in oxygen reduction reaction. |
doi_str_mv | 10.1002/idm2.12212 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_idm2_12212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>IDM212212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1982-73f7098126cb843742ff2c7b5b36689c9bf30baec7446e06d36124d2b26bd9103</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOIyz8QmyFjrmpDFpljLeBhRnoeCu5KqRTiNpqs7Od_ANfRI7Vly6OofD9_8cPoQOgcyBEHoc7JrOgVKgO2hCBRcFY_Cw-7cT2EezrnsmAywBJJQT5Bex7XLqTQ6xxdFj61qbQg4Gr_LXx-fKYh3WLqumGU6tamPudd-ohJ9cdimO2T457GPCyr6q1jiL4_vm0bU4OTs2H6A9r5rOzX7nFN1fnN8trorr28vl4vS6MCArWojSCyIroNzoipWCUe-pEfpEl5xX0kjtS6KVM4Ix7gi3JQfKLNWUayuBlFN0NPaa4bUuOV-_pLBWaVMDqbeS6q2k-kfSAMMIv4XGbf4h6-XZDR0z35Qra9s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Construction of dendritic Pt–Pd bimetallic nanotubular heterostructure for advanced oxygen reduction</title><source>Wiley-Blackwell Open Access Collection</source><source>Wiley Online Library Journals</source><source>DOAJ Directory of Open Access Journals</source><creator>Wang, Mingwei ; Hu, Zhiyi ; Lv, Jieheng ; Yin, Zhiwen ; Xu, Zhewei ; Liu, Jingfeng ; Feng, Shihao ; Wang, Xiaoqian ; He, Jiazhen ; Luo, Sicheng ; Zhao, Dafu ; Li, Hang ; Luo, Xuemin ; Liu, Qi ; Liu, Damin ; Su, Baolian ; Zhao, Dongyuan ; Liu, Yong</creator><creatorcontrib>Wang, Mingwei ; Hu, Zhiyi ; Lv, Jieheng ; Yin, Zhiwen ; Xu, Zhewei ; Liu, Jingfeng ; Feng, Shihao ; Wang, Xiaoqian ; He, Jiazhen ; Luo, Sicheng ; Zhao, Dafu ; Li, Hang ; Luo, Xuemin ; Liu, Qi ; Liu, Damin ; Su, Baolian ; Zhao, Dongyuan ; Liu, Yong</creatorcontrib><description>Compositions and morphologies of Pt‐based electrocatalysts have great impact on the electrocatalytic activity and stability of oxygen reduction reaction (ORR). Herein, we report a novel design of one‐dimensional (1D) Pt–Pd dendritic nanotubular heterostructures (DTHs) by controlling the degree of Pt2+‐Pt reduction reaction and Pd‐Pt galvanic replacement reaction with uniform Pd nanowires as sacrificial templates. The obtained Pt–Pd bimetallic DTHs catalyst exhibited uniform and dense Pt dendritic nanobranches on the surface of 1D hollow Pt–Pd alloy nanotubes, possessing superior catalytic activity for ORR compared to state‐of‐the‐art commercial Pt/C catalysts. Typically, the Pt4Pd DTHs catalyst showed efficient mass activity (MA, 1.05 A mgPt−1) and specific activity (SA, 1.25 mA cmPt−2) at 0.9 V (vs. RHE), and the catalyst exhibited high stability with 90.4% MA retention after 20 000 potential cycles. The Pt–Pd bimetallic DTHs configuration combines the advantages of 1D hollow nanostructures and dense Pt dendritic nanobranches, which results in rich electrochemical active surface sites, fast charge transport, and multiple dendritic anchoring points contact on carbon support, thus boosting its catalytic activity and stability towards electrocatalysis.
One‐dimensional (1D) Pt–Pd dendritic nanotubular heterostructures (DTHs) are designed by controlling the degree of Pt2+‐Pt reduction reaction and Pd–Pt galvanic replacement reaction with uniform Pd nanowires as sacrificial templates. The Pt4Pd DTHs catalyst shows the highest catalyst activity and excellent stability in oxygen reduction reaction.</description><identifier>ISSN: 2767-4401</identifier><identifier>EISSN: 2767-441X</identifier><identifier>DOI: 10.1002/idm2.12212</identifier><language>eng</language><subject>dendritic hollow heterostructures ; electrocatalysis ; one‐dimensional nanowires ; oxygen reduction ; proton exchange membrane fuel cells</subject><ispartof>Interdisciplinary materials (Print), 2024-11, Vol.3 (6), p.907-918</ispartof><rights>2024 The Author(s). published by Wuhan University of Technology and John Wiley & Sons Australia, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1982-73f7098126cb843742ff2c7b5b36689c9bf30baec7446e06d36124d2b26bd9103</cites><orcidid>0000-0002-1469-0757 ; 0000-0001-8474-0652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fidm2.12212$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fidm2.12212$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,1416,11561,27923,27924,45573,45574,46051,46475</link.rule.ids></links><search><creatorcontrib>Wang, Mingwei</creatorcontrib><creatorcontrib>Hu, Zhiyi</creatorcontrib><creatorcontrib>Lv, Jieheng</creatorcontrib><creatorcontrib>Yin, Zhiwen</creatorcontrib><creatorcontrib>Xu, Zhewei</creatorcontrib><creatorcontrib>Liu, Jingfeng</creatorcontrib><creatorcontrib>Feng, Shihao</creatorcontrib><creatorcontrib>Wang, Xiaoqian</creatorcontrib><creatorcontrib>He, Jiazhen</creatorcontrib><creatorcontrib>Luo, Sicheng</creatorcontrib><creatorcontrib>Zhao, Dafu</creatorcontrib><creatorcontrib>Li, Hang</creatorcontrib><creatorcontrib>Luo, Xuemin</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Liu, Damin</creatorcontrib><creatorcontrib>Su, Baolian</creatorcontrib><creatorcontrib>Zhao, Dongyuan</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><title>Construction of dendritic Pt–Pd bimetallic nanotubular heterostructure for advanced oxygen reduction</title><title>Interdisciplinary materials (Print)</title><description>Compositions and morphologies of Pt‐based electrocatalysts have great impact on the electrocatalytic activity and stability of oxygen reduction reaction (ORR). Herein, we report a novel design of one‐dimensional (1D) Pt–Pd dendritic nanotubular heterostructures (DTHs) by controlling the degree of Pt2+‐Pt reduction reaction and Pd‐Pt galvanic replacement reaction with uniform Pd nanowires as sacrificial templates. The obtained Pt–Pd bimetallic DTHs catalyst exhibited uniform and dense Pt dendritic nanobranches on the surface of 1D hollow Pt–Pd alloy nanotubes, possessing superior catalytic activity for ORR compared to state‐of‐the‐art commercial Pt/C catalysts. Typically, the Pt4Pd DTHs catalyst showed efficient mass activity (MA, 1.05 A mgPt−1) and specific activity (SA, 1.25 mA cmPt−2) at 0.9 V (vs. RHE), and the catalyst exhibited high stability with 90.4% MA retention after 20 000 potential cycles. The Pt–Pd bimetallic DTHs configuration combines the advantages of 1D hollow nanostructures and dense Pt dendritic nanobranches, which results in rich electrochemical active surface sites, fast charge transport, and multiple dendritic anchoring points contact on carbon support, thus boosting its catalytic activity and stability towards electrocatalysis.
One‐dimensional (1D) Pt–Pd dendritic nanotubular heterostructures (DTHs) are designed by controlling the degree of Pt2+‐Pt reduction reaction and Pd–Pt galvanic replacement reaction with uniform Pd nanowires as sacrificial templates. The Pt4Pd DTHs catalyst shows the highest catalyst activity and excellent stability in oxygen reduction reaction.</description><subject>dendritic hollow heterostructures</subject><subject>electrocatalysis</subject><subject>one‐dimensional nanowires</subject><subject>oxygen reduction</subject><subject>proton exchange membrane fuel cells</subject><issn>2767-4401</issn><issn>2767-441X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kMtKxDAUhoMoOIyz8QmyFjrmpDFpljLeBhRnoeCu5KqRTiNpqs7Od_ANfRI7Vly6OofD9_8cPoQOgcyBEHoc7JrOgVKgO2hCBRcFY_Cw-7cT2EezrnsmAywBJJQT5Bex7XLqTQ6xxdFj61qbQg4Gr_LXx-fKYh3WLqumGU6tamPudd-ohJ9cdimO2T457GPCyr6q1jiL4_vm0bU4OTs2H6A9r5rOzX7nFN1fnN8trorr28vl4vS6MCArWojSCyIroNzoipWCUe-pEfpEl5xX0kjtS6KVM4Ix7gi3JQfKLNWUayuBlFN0NPaa4bUuOV-_pLBWaVMDqbeS6q2k-kfSAMMIv4XGbf4h6-XZDR0z35Qra9s</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Wang, Mingwei</creator><creator>Hu, Zhiyi</creator><creator>Lv, Jieheng</creator><creator>Yin, Zhiwen</creator><creator>Xu, Zhewei</creator><creator>Liu, Jingfeng</creator><creator>Feng, Shihao</creator><creator>Wang, Xiaoqian</creator><creator>He, Jiazhen</creator><creator>Luo, Sicheng</creator><creator>Zhao, Dafu</creator><creator>Li, Hang</creator><creator>Luo, Xuemin</creator><creator>Liu, Qi</creator><creator>Liu, Damin</creator><creator>Su, Baolian</creator><creator>Zhao, Dongyuan</creator><creator>Liu, Yong</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1469-0757</orcidid><orcidid>https://orcid.org/0000-0001-8474-0652</orcidid></search><sort><creationdate>202411</creationdate><title>Construction of dendritic Pt–Pd bimetallic nanotubular heterostructure for advanced oxygen reduction</title><author>Wang, Mingwei ; Hu, Zhiyi ; Lv, Jieheng ; Yin, Zhiwen ; Xu, Zhewei ; Liu, Jingfeng ; Feng, Shihao ; Wang, Xiaoqian ; He, Jiazhen ; Luo, Sicheng ; Zhao, Dafu ; Li, Hang ; Luo, Xuemin ; Liu, Qi ; Liu, Damin ; Su, Baolian ; Zhao, Dongyuan ; Liu, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1982-73f7098126cb843742ff2c7b5b36689c9bf30baec7446e06d36124d2b26bd9103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>dendritic hollow heterostructures</topic><topic>electrocatalysis</topic><topic>one‐dimensional nanowires</topic><topic>oxygen reduction</topic><topic>proton exchange membrane fuel cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Mingwei</creatorcontrib><creatorcontrib>Hu, Zhiyi</creatorcontrib><creatorcontrib>Lv, Jieheng</creatorcontrib><creatorcontrib>Yin, Zhiwen</creatorcontrib><creatorcontrib>Xu, Zhewei</creatorcontrib><creatorcontrib>Liu, Jingfeng</creatorcontrib><creatorcontrib>Feng, Shihao</creatorcontrib><creatorcontrib>Wang, Xiaoqian</creatorcontrib><creatorcontrib>He, Jiazhen</creatorcontrib><creatorcontrib>Luo, Sicheng</creatorcontrib><creatorcontrib>Zhao, Dafu</creatorcontrib><creatorcontrib>Li, Hang</creatorcontrib><creatorcontrib>Luo, Xuemin</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Liu, Damin</creatorcontrib><creatorcontrib>Su, Baolian</creatorcontrib><creatorcontrib>Zhao, Dongyuan</creatorcontrib><creatorcontrib>Liu, Yong</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Free Archive</collection><collection>CrossRef</collection><jtitle>Interdisciplinary materials (Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Mingwei</au><au>Hu, Zhiyi</au><au>Lv, Jieheng</au><au>Yin, Zhiwen</au><au>Xu, Zhewei</au><au>Liu, Jingfeng</au><au>Feng, Shihao</au><au>Wang, Xiaoqian</au><au>He, Jiazhen</au><au>Luo, Sicheng</au><au>Zhao, Dafu</au><au>Li, Hang</au><au>Luo, Xuemin</au><au>Liu, Qi</au><au>Liu, Damin</au><au>Su, Baolian</au><au>Zhao, Dongyuan</au><au>Liu, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of dendritic Pt–Pd bimetallic nanotubular heterostructure for advanced oxygen reduction</atitle><jtitle>Interdisciplinary materials (Print)</jtitle><date>2024-11</date><risdate>2024</risdate><volume>3</volume><issue>6</issue><spage>907</spage><epage>918</epage><pages>907-918</pages><issn>2767-4401</issn><eissn>2767-441X</eissn><abstract>Compositions and morphologies of Pt‐based electrocatalysts have great impact on the electrocatalytic activity and stability of oxygen reduction reaction (ORR). Herein, we report a novel design of one‐dimensional (1D) Pt–Pd dendritic nanotubular heterostructures (DTHs) by controlling the degree of Pt2+‐Pt reduction reaction and Pd‐Pt galvanic replacement reaction with uniform Pd nanowires as sacrificial templates. The obtained Pt–Pd bimetallic DTHs catalyst exhibited uniform and dense Pt dendritic nanobranches on the surface of 1D hollow Pt–Pd alloy nanotubes, possessing superior catalytic activity for ORR compared to state‐of‐the‐art commercial Pt/C catalysts. Typically, the Pt4Pd DTHs catalyst showed efficient mass activity (MA, 1.05 A mgPt−1) and specific activity (SA, 1.25 mA cmPt−2) at 0.9 V (vs. RHE), and the catalyst exhibited high stability with 90.4% MA retention after 20 000 potential cycles. The Pt–Pd bimetallic DTHs configuration combines the advantages of 1D hollow nanostructures and dense Pt dendritic nanobranches, which results in rich electrochemical active surface sites, fast charge transport, and multiple dendritic anchoring points contact on carbon support, thus boosting its catalytic activity and stability towards electrocatalysis.
One‐dimensional (1D) Pt–Pd dendritic nanotubular heterostructures (DTHs) are designed by controlling the degree of Pt2+‐Pt reduction reaction and Pd–Pt galvanic replacement reaction with uniform Pd nanowires as sacrificial templates. The Pt4Pd DTHs catalyst shows the highest catalyst activity and excellent stability in oxygen reduction reaction.</abstract><doi>10.1002/idm2.12212</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1469-0757</orcidid><orcidid>https://orcid.org/0000-0001-8474-0652</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2767-4401 |
ispartof | Interdisciplinary materials (Print), 2024-11, Vol.3 (6), p.907-918 |
issn | 2767-4401 2767-441X |
language | eng |
recordid | cdi_crossref_primary_10_1002_idm2_12212 |
source | Wiley-Blackwell Open Access Collection; Wiley Online Library Journals; DOAJ Directory of Open Access Journals |
subjects | dendritic hollow heterostructures electrocatalysis one‐dimensional nanowires oxygen reduction proton exchange membrane fuel cells |
title | Construction of dendritic Pt–Pd bimetallic nanotubular heterostructure for advanced oxygen reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A19%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20dendritic%20Pt%E2%80%93Pd%20bimetallic%20nanotubular%20heterostructure%20for%20advanced%20oxygen%20reduction&rft.jtitle=Interdisciplinary%20materials%20(Print)&rft.au=Wang,%20Mingwei&rft.date=2024-11&rft.volume=3&rft.issue=6&rft.spage=907&rft.epage=918&rft.pages=907-918&rft.issn=2767-4401&rft.eissn=2767-441X&rft_id=info:doi/10.1002/idm2.12212&rft_dat=%3Cwiley_cross%3EIDM212212%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |