Recharge estimation using remotely sensed evapotranspiration in an irrigated catchment in southeast Australia
Reliable estimates of groundwater recharge are required for the sustainable management of surface and ground water resources in semi‐arid regions particularly in irrigated regions. In this study, groundwater recharge was estimated for an irrigated catchment in southeast Australia using a semi‐distri...
Gespeichert in:
Veröffentlicht in: | Hydrological processes 2012-04, Vol.26 (9), p.1379-1389 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reliable estimates of groundwater recharge are required for the sustainable management of surface and ground water resources in semi‐arid regions particularly in irrigated regions. In this study, groundwater recharge was estimated for an irrigated catchment in southeast Australia using a semi‐distributed hydrological model (SWAT). The model was calibrated under the dry climatic conditions for the period from August 2002 to July 2003 using flow and remotely sensed evapotranspiration (ET). The model was able to simulate observed monthly drain flow and spatially distributed remotely sensed ET. Recharge tended to be higher for irrigated land covers, such as perennial pasture, than for non‐irrigated land. On average, the estimated annual catchment recharge ranged between 147 and 289 mm which represented about 40% of the total rainfall and irrigation inputs. The optimized soil parameters indirectly reflected flow bypassing the soil matrix that could be responsible for this substantial amount of recharge. Overall, the estimated recharge was much more than that previously estimated for the wetter years. Copyright © 2011 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0885-6087 1099-1085 |
DOI: | 10.1002/hyp.8274 |