CFD study of heat transfer in power‐law fluids over a corrugated cylinder

The computational study of power‐law fluid flow, along with heat transfer attributes over a corrugated heated cylinder, is explored using ANSYS FLUENT (Version 18.0). Fluids power‐law indices fall in the range of 0.25 ≤ n ≤ 1.5, and the Reynolds number spans in the range of 1 ≤ ReN ≤ 40. The flow is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heat transfer (Hoboken, N.J. Print) N.J. Print), 2024-11, Vol.53 (7), p.3880-3901
Hauptverfasser: Rajpuriya, Sonam Gopaldasji, Dhiman, Sachin Kumar, Shyam, Radhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3901
container_issue 7
container_start_page 3880
container_title Heat transfer (Hoboken, N.J. Print)
container_volume 53
creator Rajpuriya, Sonam Gopaldasji
Dhiman, Sachin Kumar
Shyam, Radhe
description The computational study of power‐law fluid flow, along with heat transfer attributes over a corrugated heated cylinder, is explored using ANSYS FLUENT (Version 18.0). Fluids power‐law indices fall in the range of 0.25 ≤ n ≤ 1.5, and the Reynolds number spans in the range of 1 ≤ ReN ≤ 40. The flow is two‐dimensional, steady, and laminar. A wide range of Prandtl numbers (0.7 ≤ PrN ≤ 500) is used to cover the most industrially applied fluids. A domain height of 135Dh is used. A grid with the smallest element size of 0.04 m and 135,914 nodes was used. Flow and heat transfer attributes were studied using streamlines, isotherms, and local and average Nusselt numbers. The average Nusselt number increases with ReN and/or PrN. The heat transfer rate is significantly lower in dilatant fluids and higher in pseudoplastic fluids than in Newtonian fluids. The onset of wake formation behind the cylinder takes place at ReN = 10. The increase in Reynolds number (ReN) and power‐law index (n) causes an increase in wake size. Heat transfer increases with the Reynolds number and/or decrease in the power‐law index. The enhancement in heat transfer due to corrugation is studied in detail in terms of average Nusselt number, which has not been studied for arched corrugated cylinder, even for Newtonian fluids in low Reynolds number range. A Nusselt number correlation is also developed for the given ranges of conditions.
doi_str_mv 10.1002/htj.23108
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_htj_23108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>HTJ23108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1598-dae9c2d84cfa4e5ee7b45fa56840c5dcc8717bf77bff8123fb442856f8b5b8ba3</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EElXpwBt4ZUhrO3bijihQClRiKbPln2uaKiSVnRJl4xF4Rp6EQBAbw9W90j3fNxyELimZU0LYYtfu5yylRJ6gCcukTLjg7PTvTvk5msW4JwMrKM1ZNkGPxeoGx_boetx4vAPd4jboOnoIuKzxoekgfL5_VLrDvjqWLuLmbXhpbJsQji-6BYdtX5W1g3CBzryuIsx-9xQ9r263xTrZPN3dF9ebxFKxlInTsLTMSW695iAAcsOF1yKTnFjhrJU5zY3Ph_GSstQbzpkUmZdGGGl0OkVXY68NTYwBvDqE8lWHXlGivkWoQYT6ETGwi5Htygr6_0G13j6MiS-fxGEz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CFD study of heat transfer in power‐law fluids over a corrugated cylinder</title><source>Wiley Journals</source><creator>Rajpuriya, Sonam Gopaldasji ; Dhiman, Sachin Kumar ; Shyam, Radhe</creator><creatorcontrib>Rajpuriya, Sonam Gopaldasji ; Dhiman, Sachin Kumar ; Shyam, Radhe</creatorcontrib><description>The computational study of power‐law fluid flow, along with heat transfer attributes over a corrugated heated cylinder, is explored using ANSYS FLUENT (Version 18.0). Fluids power‐law indices fall in the range of 0.25 ≤ n ≤ 1.5, and the Reynolds number spans in the range of 1 ≤ ReN ≤ 40. The flow is two‐dimensional, steady, and laminar. A wide range of Prandtl numbers (0.7 ≤ PrN ≤ 500) is used to cover the most industrially applied fluids. A domain height of 135Dh is used. A grid with the smallest element size of 0.04 m and 135,914 nodes was used. Flow and heat transfer attributes were studied using streamlines, isotherms, and local and average Nusselt numbers. The average Nusselt number increases with ReN and/or PrN. The heat transfer rate is significantly lower in dilatant fluids and higher in pseudoplastic fluids than in Newtonian fluids. The onset of wake formation behind the cylinder takes place at ReN = 10. The increase in Reynolds number (ReN) and power‐law index (n) causes an increase in wake size. Heat transfer increases with the Reynolds number and/or decrease in the power‐law index. The enhancement in heat transfer due to corrugation is studied in detail in terms of average Nusselt number, which has not been studied for arched corrugated cylinder, even for Newtonian fluids in low Reynolds number range. A Nusselt number correlation is also developed for the given ranges of conditions.</description><identifier>ISSN: 2688-4534</identifier><identifier>EISSN: 2688-4542</identifier><identifier>DOI: 10.1002/htj.23108</identifier><language>eng</language><subject>corrugated ; drag coefficient ; Nusselt number ; power‐law index ; Prandtl number</subject><ispartof>Heat transfer (Hoboken, N.J. Print), 2024-11, Vol.53 (7), p.3880-3901</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1598-dae9c2d84cfa4e5ee7b45fa56840c5dcc8717bf77bff8123fb442856f8b5b8ba3</cites><orcidid>0000-0003-4172-8615</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhtj.23108$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhtj.23108$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Rajpuriya, Sonam Gopaldasji</creatorcontrib><creatorcontrib>Dhiman, Sachin Kumar</creatorcontrib><creatorcontrib>Shyam, Radhe</creatorcontrib><title>CFD study of heat transfer in power‐law fluids over a corrugated cylinder</title><title>Heat transfer (Hoboken, N.J. Print)</title><description>The computational study of power‐law fluid flow, along with heat transfer attributes over a corrugated heated cylinder, is explored using ANSYS FLUENT (Version 18.0). Fluids power‐law indices fall in the range of 0.25 ≤ n ≤ 1.5, and the Reynolds number spans in the range of 1 ≤ ReN ≤ 40. The flow is two‐dimensional, steady, and laminar. A wide range of Prandtl numbers (0.7 ≤ PrN ≤ 500) is used to cover the most industrially applied fluids. A domain height of 135Dh is used. A grid with the smallest element size of 0.04 m and 135,914 nodes was used. Flow and heat transfer attributes were studied using streamlines, isotherms, and local and average Nusselt numbers. The average Nusselt number increases with ReN and/or PrN. The heat transfer rate is significantly lower in dilatant fluids and higher in pseudoplastic fluids than in Newtonian fluids. The onset of wake formation behind the cylinder takes place at ReN = 10. The increase in Reynolds number (ReN) and power‐law index (n) causes an increase in wake size. Heat transfer increases with the Reynolds number and/or decrease in the power‐law index. The enhancement in heat transfer due to corrugation is studied in detail in terms of average Nusselt number, which has not been studied for arched corrugated cylinder, even for Newtonian fluids in low Reynolds number range. A Nusselt number correlation is also developed for the given ranges of conditions.</description><subject>corrugated</subject><subject>drag coefficient</subject><subject>Nusselt number</subject><subject>power‐law index</subject><subject>Prandtl number</subject><issn>2688-4534</issn><issn>2688-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAURi0EElXpwBt4ZUhrO3bijihQClRiKbPln2uaKiSVnRJl4xF4Rp6EQBAbw9W90j3fNxyELimZU0LYYtfu5yylRJ6gCcukTLjg7PTvTvk5msW4JwMrKM1ZNkGPxeoGx_boetx4vAPd4jboOnoIuKzxoekgfL5_VLrDvjqWLuLmbXhpbJsQji-6BYdtX5W1g3CBzryuIsx-9xQ9r263xTrZPN3dF9ebxFKxlInTsLTMSW695iAAcsOF1yKTnFjhrJU5zY3Ph_GSstQbzpkUmZdGGGl0OkVXY68NTYwBvDqE8lWHXlGivkWoQYT6ETGwi5Htygr6_0G13j6MiS-fxGEz</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Rajpuriya, Sonam Gopaldasji</creator><creator>Dhiman, Sachin Kumar</creator><creator>Shyam, Radhe</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4172-8615</orcidid></search><sort><creationdate>202411</creationdate><title>CFD study of heat transfer in power‐law fluids over a corrugated cylinder</title><author>Rajpuriya, Sonam Gopaldasji ; Dhiman, Sachin Kumar ; Shyam, Radhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1598-dae9c2d84cfa4e5ee7b45fa56840c5dcc8717bf77bff8123fb442856f8b5b8ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>corrugated</topic><topic>drag coefficient</topic><topic>Nusselt number</topic><topic>power‐law index</topic><topic>Prandtl number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajpuriya, Sonam Gopaldasji</creatorcontrib><creatorcontrib>Dhiman, Sachin Kumar</creatorcontrib><creatorcontrib>Shyam, Radhe</creatorcontrib><collection>CrossRef</collection><jtitle>Heat transfer (Hoboken, N.J. Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajpuriya, Sonam Gopaldasji</au><au>Dhiman, Sachin Kumar</au><au>Shyam, Radhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD study of heat transfer in power‐law fluids over a corrugated cylinder</atitle><jtitle>Heat transfer (Hoboken, N.J. Print)</jtitle><date>2024-11</date><risdate>2024</risdate><volume>53</volume><issue>7</issue><spage>3880</spage><epage>3901</epage><pages>3880-3901</pages><issn>2688-4534</issn><eissn>2688-4542</eissn><abstract>The computational study of power‐law fluid flow, along with heat transfer attributes over a corrugated heated cylinder, is explored using ANSYS FLUENT (Version 18.0). Fluids power‐law indices fall in the range of 0.25 ≤ n ≤ 1.5, and the Reynolds number spans in the range of 1 ≤ ReN ≤ 40. The flow is two‐dimensional, steady, and laminar. A wide range of Prandtl numbers (0.7 ≤ PrN ≤ 500) is used to cover the most industrially applied fluids. A domain height of 135Dh is used. A grid with the smallest element size of 0.04 m and 135,914 nodes was used. Flow and heat transfer attributes were studied using streamlines, isotherms, and local and average Nusselt numbers. The average Nusselt number increases with ReN and/or PrN. The heat transfer rate is significantly lower in dilatant fluids and higher in pseudoplastic fluids than in Newtonian fluids. The onset of wake formation behind the cylinder takes place at ReN = 10. The increase in Reynolds number (ReN) and power‐law index (n) causes an increase in wake size. Heat transfer increases with the Reynolds number and/or decrease in the power‐law index. The enhancement in heat transfer due to corrugation is studied in detail in terms of average Nusselt number, which has not been studied for arched corrugated cylinder, even for Newtonian fluids in low Reynolds number range. A Nusselt number correlation is also developed for the given ranges of conditions.</abstract><doi>10.1002/htj.23108</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-4172-8615</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2688-4534
ispartof Heat transfer (Hoboken, N.J. Print), 2024-11, Vol.53 (7), p.3880-3901
issn 2688-4534
2688-4542
language eng
recordid cdi_crossref_primary_10_1002_htj_23108
source Wiley Journals
subjects corrugated
drag coefficient
Nusselt number
power‐law index
Prandtl number
title CFD study of heat transfer in power‐law fluids over a corrugated cylinder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A43%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD%20study%20of%20heat%20transfer%20in%20power%E2%80%90law%20fluids%20over%20a%20corrugated%20cylinder&rft.jtitle=Heat%20transfer%20(Hoboken,%20N.J.%20Print)&rft.au=Rajpuriya,%20Sonam%20Gopaldasji&rft.date=2024-11&rft.volume=53&rft.issue=7&rft.spage=3880&rft.epage=3901&rft.pages=3880-3901&rft.issn=2688-4534&rft.eissn=2688-4542&rft_id=info:doi/10.1002/htj.23108&rft_dat=%3Cwiley_cross%3EHTJ23108%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true