Flue gas waste heat affects algal liquid temperature for microalgal production in column photobioreactors

To explore the effects of waste heat (50–170°C) from steel plant flue gas on the column photobioreactor algal liquid temperature for microalgal production, a flue gas‐microalgal liquid heat transfer model was developed that simulated the microalgal growth environment for flue‐gas carbon dioxide (CO2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heat transfer (Hoboken, N.J. Print) N.J. Print), 2024-06, Vol.53 (4), p.2173-2190
Hauptverfasser: Hu, Zhenyu, Wu, Yulun, Wang, Xin, Yu, Zaiyin, Mao, Weiguang, Cheng, Cai, Che, Guanmou, Zhao, Long, Li, Tuxin, Yang, Weijuan, Cheng, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2190
container_issue 4
container_start_page 2173
container_title Heat transfer (Hoboken, N.J. Print)
container_volume 53
creator Hu, Zhenyu
Wu, Yulun
Wang, Xin
Yu, Zaiyin
Mao, Weiguang
Cheng, Cai
Che, Guanmou
Zhao, Long
Li, Tuxin
Yang, Weijuan
Cheng, Jun
description To explore the effects of waste heat (50–170°C) from steel plant flue gas on the column photobioreactor algal liquid temperature for microalgal production, a flue gas‐microalgal liquid heat transfer model was developed that simulated the microalgal growth environment for flue‐gas carbon dioxide (CO2) fixation. The simulation results showed that the influence of high‐temperature flue gas weakened with the increasing microalgal liquid temperature due to enhanced evaporation and heat dissipation. Increasing the flue gas temperature and aeration rate resulted in a higher microalgal liquid temperature up to a maximum increase of 4.16°C at an ambient temperature of 25°C, an aeration rate of 2 L/min, and a flue gas temperature of 170°C. In an experiment on the effect of incubation temperature on the growth rate of microalgae, at an optimal temperature of 35°C, the Chlorella sp. PY‐ZU1 growth rate exhibited a remarkable increase of 104.7% compared to that at 42.5°C. Therefore, modulating the flue gas conditions can significantly increase the microalgal growth rate for CO2 fixation, making it a promising approach to increase biomass production for efficient carbon utilization. Flue gas waste heat affects the algal liquid temperature in column photobioreactors.
doi_str_mv 10.1002/htj.23032
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_htj_23032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>HTJ23032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2292-62c4b7ff01befe02fff7300fff3af80e281c28e67c5db67edffcf7f382ea1e6a3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EElXpwD_wypDWvqRJGFFFKagSS5kjx7lrXTl1sB1V_fcEgtiY3hu-Oz19jN1LMZdCwOIQj3NIRQpXbAJ5WSbZMoPrv55mt2wWwlEM7FLKAvIJM2vbI9-rwM8qROQHVJErItQxcGX3ynJrPnvT8Ihth17F3iMn53lrtHcj0XnX9Doad-LmxLWzfXvi3cFFVxvnUenofLhjN6RswNlvTtnH-nm32iTb95fX1dM20QCPkOSgs7ogErJGQgFEVKRCDJEqKgVCKTWUmBd62dR5gQ2RpoLSElBJzFU6ZQ_j32FeCB6p6rxplb9UUlTfmqpBU_WjaWAXI3s2Fi__g9Vm9zZefAEEyW0m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Flue gas waste heat affects algal liquid temperature for microalgal production in column photobioreactors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hu, Zhenyu ; Wu, Yulun ; Wang, Xin ; Yu, Zaiyin ; Mao, Weiguang ; Cheng, Cai ; Che, Guanmou ; Zhao, Long ; Li, Tuxin ; Yang, Weijuan ; Cheng, Jun</creator><creatorcontrib>Hu, Zhenyu ; Wu, Yulun ; Wang, Xin ; Yu, Zaiyin ; Mao, Weiguang ; Cheng, Cai ; Che, Guanmou ; Zhao, Long ; Li, Tuxin ; Yang, Weijuan ; Cheng, Jun</creatorcontrib><description>To explore the effects of waste heat (50–170°C) from steel plant flue gas on the column photobioreactor algal liquid temperature for microalgal production, a flue gas‐microalgal liquid heat transfer model was developed that simulated the microalgal growth environment for flue‐gas carbon dioxide (CO2) fixation. The simulation results showed that the influence of high‐temperature flue gas weakened with the increasing microalgal liquid temperature due to enhanced evaporation and heat dissipation. Increasing the flue gas temperature and aeration rate resulted in a higher microalgal liquid temperature up to a maximum increase of 4.16°C at an ambient temperature of 25°C, an aeration rate of 2 L/min, and a flue gas temperature of 170°C. In an experiment on the effect of incubation temperature on the growth rate of microalgae, at an optimal temperature of 35°C, the Chlorella sp. PY‐ZU1 growth rate exhibited a remarkable increase of 104.7% compared to that at 42.5°C. Therefore, modulating the flue gas conditions can significantly increase the microalgal growth rate for CO2 fixation, making it a promising approach to increase biomass production for efficient carbon utilization. Flue gas waste heat affects the algal liquid temperature in column photobioreactors.</description><identifier>ISSN: 2688-4534</identifier><identifier>EISSN: 2688-4542</identifier><identifier>DOI: 10.1002/htj.23032</identifier><language>eng</language><subject>algae liquid temperature ; flue gas ; hat transfer ; simulation</subject><ispartof>Heat transfer (Hoboken, N.J. Print), 2024-06, Vol.53 (4), p.2173-2190</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2292-62c4b7ff01befe02fff7300fff3af80e281c28e67c5db67edffcf7f382ea1e6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhtj.23032$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhtj.23032$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Hu, Zhenyu</creatorcontrib><creatorcontrib>Wu, Yulun</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Yu, Zaiyin</creatorcontrib><creatorcontrib>Mao, Weiguang</creatorcontrib><creatorcontrib>Cheng, Cai</creatorcontrib><creatorcontrib>Che, Guanmou</creatorcontrib><creatorcontrib>Zhao, Long</creatorcontrib><creatorcontrib>Li, Tuxin</creatorcontrib><creatorcontrib>Yang, Weijuan</creatorcontrib><creatorcontrib>Cheng, Jun</creatorcontrib><title>Flue gas waste heat affects algal liquid temperature for microalgal production in column photobioreactors</title><title>Heat transfer (Hoboken, N.J. Print)</title><description>To explore the effects of waste heat (50–170°C) from steel plant flue gas on the column photobioreactor algal liquid temperature for microalgal production, a flue gas‐microalgal liquid heat transfer model was developed that simulated the microalgal growth environment for flue‐gas carbon dioxide (CO2) fixation. The simulation results showed that the influence of high‐temperature flue gas weakened with the increasing microalgal liquid temperature due to enhanced evaporation and heat dissipation. Increasing the flue gas temperature and aeration rate resulted in a higher microalgal liquid temperature up to a maximum increase of 4.16°C at an ambient temperature of 25°C, an aeration rate of 2 L/min, and a flue gas temperature of 170°C. In an experiment on the effect of incubation temperature on the growth rate of microalgae, at an optimal temperature of 35°C, the Chlorella sp. PY‐ZU1 growth rate exhibited a remarkable increase of 104.7% compared to that at 42.5°C. Therefore, modulating the flue gas conditions can significantly increase the microalgal growth rate for CO2 fixation, making it a promising approach to increase biomass production for efficient carbon utilization. Flue gas waste heat affects the algal liquid temperature in column photobioreactors.</description><subject>algae liquid temperature</subject><subject>flue gas</subject><subject>hat transfer</subject><subject>simulation</subject><issn>2688-4534</issn><issn>2688-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EElXpwD_wypDWvqRJGFFFKagSS5kjx7lrXTl1sB1V_fcEgtiY3hu-Oz19jN1LMZdCwOIQj3NIRQpXbAJ5WSbZMoPrv55mt2wWwlEM7FLKAvIJM2vbI9-rwM8qROQHVJErItQxcGX3ynJrPnvT8Ihth17F3iMn53lrtHcj0XnX9Doad-LmxLWzfXvi3cFFVxvnUenofLhjN6RswNlvTtnH-nm32iTb95fX1dM20QCPkOSgs7ogErJGQgFEVKRCDJEqKgVCKTWUmBd62dR5gQ2RpoLSElBJzFU6ZQ_j32FeCB6p6rxplb9UUlTfmqpBU_WjaWAXI3s2Fi__g9Vm9zZefAEEyW0m</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Hu, Zhenyu</creator><creator>Wu, Yulun</creator><creator>Wang, Xin</creator><creator>Yu, Zaiyin</creator><creator>Mao, Weiguang</creator><creator>Cheng, Cai</creator><creator>Che, Guanmou</creator><creator>Zhao, Long</creator><creator>Li, Tuxin</creator><creator>Yang, Weijuan</creator><creator>Cheng, Jun</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202406</creationdate><title>Flue gas waste heat affects algal liquid temperature for microalgal production in column photobioreactors</title><author>Hu, Zhenyu ; Wu, Yulun ; Wang, Xin ; Yu, Zaiyin ; Mao, Weiguang ; Cheng, Cai ; Che, Guanmou ; Zhao, Long ; Li, Tuxin ; Yang, Weijuan ; Cheng, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2292-62c4b7ff01befe02fff7300fff3af80e281c28e67c5db67edffcf7f382ea1e6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>algae liquid temperature</topic><topic>flue gas</topic><topic>hat transfer</topic><topic>simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Zhenyu</creatorcontrib><creatorcontrib>Wu, Yulun</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Yu, Zaiyin</creatorcontrib><creatorcontrib>Mao, Weiguang</creatorcontrib><creatorcontrib>Cheng, Cai</creatorcontrib><creatorcontrib>Che, Guanmou</creatorcontrib><creatorcontrib>Zhao, Long</creatorcontrib><creatorcontrib>Li, Tuxin</creatorcontrib><creatorcontrib>Yang, Weijuan</creatorcontrib><creatorcontrib>Cheng, Jun</creatorcontrib><collection>CrossRef</collection><jtitle>Heat transfer (Hoboken, N.J. Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Zhenyu</au><au>Wu, Yulun</au><au>Wang, Xin</au><au>Yu, Zaiyin</au><au>Mao, Weiguang</au><au>Cheng, Cai</au><au>Che, Guanmou</au><au>Zhao, Long</au><au>Li, Tuxin</au><au>Yang, Weijuan</au><au>Cheng, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flue gas waste heat affects algal liquid temperature for microalgal production in column photobioreactors</atitle><jtitle>Heat transfer (Hoboken, N.J. Print)</jtitle><date>2024-06</date><risdate>2024</risdate><volume>53</volume><issue>4</issue><spage>2173</spage><epage>2190</epage><pages>2173-2190</pages><issn>2688-4534</issn><eissn>2688-4542</eissn><abstract>To explore the effects of waste heat (50–170°C) from steel plant flue gas on the column photobioreactor algal liquid temperature for microalgal production, a flue gas‐microalgal liquid heat transfer model was developed that simulated the microalgal growth environment for flue‐gas carbon dioxide (CO2) fixation. The simulation results showed that the influence of high‐temperature flue gas weakened with the increasing microalgal liquid temperature due to enhanced evaporation and heat dissipation. Increasing the flue gas temperature and aeration rate resulted in a higher microalgal liquid temperature up to a maximum increase of 4.16°C at an ambient temperature of 25°C, an aeration rate of 2 L/min, and a flue gas temperature of 170°C. In an experiment on the effect of incubation temperature on the growth rate of microalgae, at an optimal temperature of 35°C, the Chlorella sp. PY‐ZU1 growth rate exhibited a remarkable increase of 104.7% compared to that at 42.5°C. Therefore, modulating the flue gas conditions can significantly increase the microalgal growth rate for CO2 fixation, making it a promising approach to increase biomass production for efficient carbon utilization. Flue gas waste heat affects the algal liquid temperature in column photobioreactors.</abstract><doi>10.1002/htj.23032</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2688-4534
ispartof Heat transfer (Hoboken, N.J. Print), 2024-06, Vol.53 (4), p.2173-2190
issn 2688-4534
2688-4542
language eng
recordid cdi_crossref_primary_10_1002_htj_23032
source Wiley Online Library Journals Frontfile Complete
subjects algae liquid temperature
flue gas
hat transfer
simulation
title Flue gas waste heat affects algal liquid temperature for microalgal production in column photobioreactors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flue%20gas%20waste%20heat%20affects%20algal%20liquid%20temperature%20for%20microalgal%20production%20in%20column%20photobioreactors&rft.jtitle=Heat%20transfer%20(Hoboken,%20N.J.%20Print)&rft.au=Hu,%20Zhenyu&rft.date=2024-06&rft.volume=53&rft.issue=4&rft.spage=2173&rft.epage=2190&rft.pages=2173-2190&rft.issn=2688-4534&rft.eissn=2688-4542&rft_id=info:doi/10.1002/htj.23032&rft_dat=%3Cwiley_cross%3EHTJ23032%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true