Physics‐informed deep learning study for MHD particle‐fluid suspension flow with heat transfer in porous annular‐sector duct

Thermal enhancement remains a critical requirement in different engineering applications. Many factors can affect the efficiency of the techniques used for this aim. The purpose of this study is to investigate the impact of particle‐fluid suspensions with heat transfer through porous annular‐sector...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heat transfer (Hoboken, N.J. Print) N.J. Print), 2024-06, Vol.53 (4), p.1749-1769
Hauptverfasser: Mekheimer, Khaled Saad, Mohamed El‐Sayed, Mohamed Obeid, Akbar, Noreen Sher, Gouda, Ashraf A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1769
container_issue 4
container_start_page 1749
container_title Heat transfer (Hoboken, N.J. Print)
container_volume 53
creator Mekheimer, Khaled Saad
Mohamed El‐Sayed, Mohamed Obeid
Akbar, Noreen Sher
Gouda, Ashraf A.
description Thermal enhancement remains a critical requirement in different engineering applications. Many factors can affect the efficiency of the techniques used for this aim. The purpose of this study is to investigate the impact of particle‐fluid suspensions with heat transfer through porous annular‐sector duct on enhancement techniques and address the potential application of deep learning to suspension problems. The analysis is focused on the fully developed region of the forced convection flow. Thermal and rheological properties of particle‐fluid suspensions were studied using physics‐informed neural networks exploiting transfer learning capabilities for making parameter analysis. Another finite element solution was introduced as a measure of accuracy and to support our findings. Results were prepared in a comparative manner for both solvers including contour plots, tabular, and two dimensional figures. The average Nusselt number and friction factors were calculated for different cases to investigate the value of the thermal performance factor. Our results indicate the downside of suspensions on thermal enhancement and their negative impact on other techniques.
doi_str_mv 10.1002/htj.23017
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_htj_23017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>HTJ23017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2297-1d72564dd86f0cc1e1af4b3a8cf0695b021398782181bc1cb1ba964aeead815d3</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EElXpwBt4ZUhrO3_OiMpPQUUwlDly7GviKnUi21GVDfEEfUaehEARG9M90v3OGT6ELimZU0LYog7bOYsJzU_QhGWcR0masNO_HCfnaOb9loxsSmnOsgn6eKkHb6T_fD8Yq1u3A4UVQIcbEM4a-4Z96NWAxxd-Wt3gTrhgZAMjr5veKOx734H1prVYN-0e702ocQ0i4OCE9RocNhZ3rWt7j4W1fSPcWPYgwzipehku0JkWjYfZ752i17vbzXIVrZ_vH5bX60gyVuQRVTlLs0QpnmkiJQUqdFLFgktNsiKtCKNxwXPOKKeVpLKilSiyRAAIxWmq4im6Ou5K13rvQJedMzvhhpKS8ttfOforf_yN7OLI7k0Dw_9gudo8HhtfIkJ37w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Physics‐informed deep learning study for MHD particle‐fluid suspension flow with heat transfer in porous annular‐sector duct</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mekheimer, Khaled Saad ; Mohamed El‐Sayed, Mohamed Obeid ; Akbar, Noreen Sher ; Gouda, Ashraf A.</creator><creatorcontrib>Mekheimer, Khaled Saad ; Mohamed El‐Sayed, Mohamed Obeid ; Akbar, Noreen Sher ; Gouda, Ashraf A.</creatorcontrib><description>Thermal enhancement remains a critical requirement in different engineering applications. Many factors can affect the efficiency of the techniques used for this aim. The purpose of this study is to investigate the impact of particle‐fluid suspensions with heat transfer through porous annular‐sector duct on enhancement techniques and address the potential application of deep learning to suspension problems. The analysis is focused on the fully developed region of the forced convection flow. Thermal and rheological properties of particle‐fluid suspensions were studied using physics‐informed neural networks exploiting transfer learning capabilities for making parameter analysis. Another finite element solution was introduced as a measure of accuracy and to support our findings. Results were prepared in a comparative manner for both solvers including contour plots, tabular, and two dimensional figures. The average Nusselt number and friction factors were calculated for different cases to investigate the value of the thermal performance factor. Our results indicate the downside of suspensions on thermal enhancement and their negative impact on other techniques.</description><identifier>ISSN: 2688-4534</identifier><identifier>EISSN: 2688-4542</identifier><identifier>DOI: 10.1002/htj.23017</identifier><language>eng</language><subject>annual‐sector duct ; heat transfer enhancement ; magnetohydrodynamics ; particle‐fluid suspension ; physics‐informed neural networks</subject><ispartof>Heat transfer (Hoboken, N.J. Print), 2024-06, Vol.53 (4), p.1749-1769</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2297-1d72564dd86f0cc1e1af4b3a8cf0695b021398782181bc1cb1ba964aeead815d3</cites><orcidid>0000-0002-5332-0134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhtj.23017$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhtj.23017$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Mekheimer, Khaled Saad</creatorcontrib><creatorcontrib>Mohamed El‐Sayed, Mohamed Obeid</creatorcontrib><creatorcontrib>Akbar, Noreen Sher</creatorcontrib><creatorcontrib>Gouda, Ashraf A.</creatorcontrib><title>Physics‐informed deep learning study for MHD particle‐fluid suspension flow with heat transfer in porous annular‐sector duct</title><title>Heat transfer (Hoboken, N.J. Print)</title><description>Thermal enhancement remains a critical requirement in different engineering applications. Many factors can affect the efficiency of the techniques used for this aim. The purpose of this study is to investigate the impact of particle‐fluid suspensions with heat transfer through porous annular‐sector duct on enhancement techniques and address the potential application of deep learning to suspension problems. The analysis is focused on the fully developed region of the forced convection flow. Thermal and rheological properties of particle‐fluid suspensions were studied using physics‐informed neural networks exploiting transfer learning capabilities for making parameter analysis. Another finite element solution was introduced as a measure of accuracy and to support our findings. Results were prepared in a comparative manner for both solvers including contour plots, tabular, and two dimensional figures. The average Nusselt number and friction factors were calculated for different cases to investigate the value of the thermal performance factor. Our results indicate the downside of suspensions on thermal enhancement and their negative impact on other techniques.</description><subject>annual‐sector duct</subject><subject>heat transfer enhancement</subject><subject>magnetohydrodynamics</subject><subject>particle‐fluid suspension</subject><subject>physics‐informed neural networks</subject><issn>2688-4534</issn><issn>2688-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EElXpwBt4ZUhrO3_OiMpPQUUwlDly7GviKnUi21GVDfEEfUaehEARG9M90v3OGT6ELimZU0LYog7bOYsJzU_QhGWcR0masNO_HCfnaOb9loxsSmnOsgn6eKkHb6T_fD8Yq1u3A4UVQIcbEM4a-4Z96NWAxxd-Wt3gTrhgZAMjr5veKOx734H1prVYN-0e702ocQ0i4OCE9RocNhZ3rWt7j4W1fSPcWPYgwzipehku0JkWjYfZ752i17vbzXIVrZ_vH5bX60gyVuQRVTlLs0QpnmkiJQUqdFLFgktNsiKtCKNxwXPOKKeVpLKilSiyRAAIxWmq4im6Ou5K13rvQJedMzvhhpKS8ttfOforf_yN7OLI7k0Dw_9gudo8HhtfIkJ37w</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Mekheimer, Khaled Saad</creator><creator>Mohamed El‐Sayed, Mohamed Obeid</creator><creator>Akbar, Noreen Sher</creator><creator>Gouda, Ashraf A.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5332-0134</orcidid></search><sort><creationdate>202406</creationdate><title>Physics‐informed deep learning study for MHD particle‐fluid suspension flow with heat transfer in porous annular‐sector duct</title><author>Mekheimer, Khaled Saad ; Mohamed El‐Sayed, Mohamed Obeid ; Akbar, Noreen Sher ; Gouda, Ashraf A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2297-1d72564dd86f0cc1e1af4b3a8cf0695b021398782181bc1cb1ba964aeead815d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>annual‐sector duct</topic><topic>heat transfer enhancement</topic><topic>magnetohydrodynamics</topic><topic>particle‐fluid suspension</topic><topic>physics‐informed neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mekheimer, Khaled Saad</creatorcontrib><creatorcontrib>Mohamed El‐Sayed, Mohamed Obeid</creatorcontrib><creatorcontrib>Akbar, Noreen Sher</creatorcontrib><creatorcontrib>Gouda, Ashraf A.</creatorcontrib><collection>CrossRef</collection><jtitle>Heat transfer (Hoboken, N.J. Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mekheimer, Khaled Saad</au><au>Mohamed El‐Sayed, Mohamed Obeid</au><au>Akbar, Noreen Sher</au><au>Gouda, Ashraf A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physics‐informed deep learning study for MHD particle‐fluid suspension flow with heat transfer in porous annular‐sector duct</atitle><jtitle>Heat transfer (Hoboken, N.J. Print)</jtitle><date>2024-06</date><risdate>2024</risdate><volume>53</volume><issue>4</issue><spage>1749</spage><epage>1769</epage><pages>1749-1769</pages><issn>2688-4534</issn><eissn>2688-4542</eissn><abstract>Thermal enhancement remains a critical requirement in different engineering applications. Many factors can affect the efficiency of the techniques used for this aim. The purpose of this study is to investigate the impact of particle‐fluid suspensions with heat transfer through porous annular‐sector duct on enhancement techniques and address the potential application of deep learning to suspension problems. The analysis is focused on the fully developed region of the forced convection flow. Thermal and rheological properties of particle‐fluid suspensions were studied using physics‐informed neural networks exploiting transfer learning capabilities for making parameter analysis. Another finite element solution was introduced as a measure of accuracy and to support our findings. Results were prepared in a comparative manner for both solvers including contour plots, tabular, and two dimensional figures. The average Nusselt number and friction factors were calculated for different cases to investigate the value of the thermal performance factor. Our results indicate the downside of suspensions on thermal enhancement and their negative impact on other techniques.</abstract><doi>10.1002/htj.23017</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-5332-0134</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2688-4534
ispartof Heat transfer (Hoboken, N.J. Print), 2024-06, Vol.53 (4), p.1749-1769
issn 2688-4534
2688-4542
language eng
recordid cdi_crossref_primary_10_1002_htj_23017
source Wiley Online Library Journals Frontfile Complete
subjects annual‐sector duct
heat transfer enhancement
magnetohydrodynamics
particle‐fluid suspension
physics‐informed neural networks
title Physics‐informed deep learning study for MHD particle‐fluid suspension flow with heat transfer in porous annular‐sector duct
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A12%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physics%E2%80%90informed%20deep%20learning%20study%20for%20MHD%20particle%E2%80%90fluid%20suspension%20flow%20with%20heat%20transfer%20in%20porous%20annular%E2%80%90sector%20duct&rft.jtitle=Heat%20transfer%20(Hoboken,%20N.J.%20Print)&rft.au=Mekheimer,%20Khaled%20Saad&rft.date=2024-06&rft.volume=53&rft.issue=4&rft.spage=1749&rft.epage=1769&rft.pages=1749-1769&rft.issn=2688-4534&rft.eissn=2688-4542&rft_id=info:doi/10.1002/htj.23017&rft_dat=%3Cwiley_cross%3EHTJ23017%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true