The optimum fin length distribution of tabular PCM heat exchanger

The study aims to find the optimal fin length distribution for improved heat transfer during melting and solidification in a tubular phase change material (PCM) heat exchanger (HE) designed for heat storage. Three types of horizontal PCM tabular HEs, all with five longitudinal fins, were studied num...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heat transfer (Hoboken, N.J. Print) N.J. Print), 2024-06, Vol.53 (4), p.1726-1748
Hauptverfasser: Saleh, Hussein Hatem, Mussa, Munther Abdullah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1748
container_issue 4
container_start_page 1726
container_title Heat transfer (Hoboken, N.J. Print)
container_volume 53
creator Saleh, Hussein Hatem
Mussa, Munther Abdullah
description The study aims to find the optimal fin length distribution for improved heat transfer during melting and solidification in a tubular phase change material (PCM) heat exchanger (HE) designed for heat storage. Three types of horizontal PCM tabular HEs, all with five longitudinal fins, were studied numerically. While maintaining a constant heat‐transfer area, each model depicts a unique fin length distribution design. The first model, which serves as the reference design, has a uniform fin length distribution and each fi\n is 30 mm long. The second model has shorter upper and side fins and longer lower fins. The third model has long lower fins but shorter than that of the second model, with short side fins and no change in upper fin length with reference design. The findings indicate that the second model exhibits the best heat‐transfer performance for the melting process, while the first model is most effective for solidification. Interestingly, the third design emerges as the optimum choice for both melting and solidification processes, where for 1 h of melting operation, results obtained 87%, 92%, and 90% for three models, respectively, from the first uniform model to the third model. While for 2 h of solidification the result obtained 11%, 17%, and 13% liquid fraction for the three models, respectively.
doi_str_mv 10.1002/htj.23009
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_htj_23009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>HTJ23009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2299-9211db04e285dc6f86b25f3334c2a23d7453f560609be7598c43301fd67b506f3</originalsourceid><addsrcrecordid>eNp1j7tOwzAYhS0EElXpwBt4ZUjre5IRKqCgIhjCbNmO3bjKpXIcQd-GZ-HJCASxMf1n-M7R_wFwidESI0RWVdwvCUUoPwEzIrIsYZyR079M2TlY9P0ejSzHOCViBm6KysLuEH0zNND59vOjtu0uVrD0fQxeD9F3LewcjEoPtQrwZf0EK6sitO-mUu3Ohgtw5lTd28XvnYPXu9tivUm2z_cP6-ttYgjJ8yQnGJcaMUsyXhrhMqEJd5RSZogitEzHBx0XSKBc25TnmWGUIuxKkWqOhKNzcDXtmtD1fbBOHoJvVDhKjOS3vxz95Y__yK4m9s3X9vg_KDfF49T4AsRJW70</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The optimum fin length distribution of tabular PCM heat exchanger</title><source>Access via Wiley Online Library</source><creator>Saleh, Hussein Hatem ; Mussa, Munther Abdullah</creator><creatorcontrib>Saleh, Hussein Hatem ; Mussa, Munther Abdullah</creatorcontrib><description>The study aims to find the optimal fin length distribution for improved heat transfer during melting and solidification in a tubular phase change material (PCM) heat exchanger (HE) designed for heat storage. Three types of horizontal PCM tabular HEs, all with five longitudinal fins, were studied numerically. While maintaining a constant heat‐transfer area, each model depicts a unique fin length distribution design. The first model, which serves as the reference design, has a uniform fin length distribution and each fi\n is 30 mm long. The second model has shorter upper and side fins and longer lower fins. The third model has long lower fins but shorter than that of the second model, with short side fins and no change in upper fin length with reference design. The findings indicate that the second model exhibits the best heat‐transfer performance for the melting process, while the first model is most effective for solidification. Interestingly, the third design emerges as the optimum choice for both melting and solidification processes, where for 1 h of melting operation, results obtained 87%, 92%, and 90% for three models, respectively, from the first uniform model to the third model. While for 2 h of solidification the result obtained 11%, 17%, and 13% liquid fraction for the three models, respectively.</description><identifier>ISSN: 2688-4534</identifier><identifier>EISSN: 2688-4542</identifier><identifier>DOI: 10.1002/htj.23009</identifier><language>eng</language><subject>fin length distribution ; melting ; optimum ; PCM heat exchanger ; solidification</subject><ispartof>Heat transfer (Hoboken, N.J. Print), 2024-06, Vol.53 (4), p.1726-1748</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2299-9211db04e285dc6f86b25f3334c2a23d7453f560609be7598c43301fd67b506f3</cites><orcidid>0000-0001-5421-6796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhtj.23009$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhtj.23009$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Saleh, Hussein Hatem</creatorcontrib><creatorcontrib>Mussa, Munther Abdullah</creatorcontrib><title>The optimum fin length distribution of tabular PCM heat exchanger</title><title>Heat transfer (Hoboken, N.J. Print)</title><description>The study aims to find the optimal fin length distribution for improved heat transfer during melting and solidification in a tubular phase change material (PCM) heat exchanger (HE) designed for heat storage. Three types of horizontal PCM tabular HEs, all with five longitudinal fins, were studied numerically. While maintaining a constant heat‐transfer area, each model depicts a unique fin length distribution design. The first model, which serves as the reference design, has a uniform fin length distribution and each fi\n is 30 mm long. The second model has shorter upper and side fins and longer lower fins. The third model has long lower fins but shorter than that of the second model, with short side fins and no change in upper fin length with reference design. The findings indicate that the second model exhibits the best heat‐transfer performance for the melting process, while the first model is most effective for solidification. Interestingly, the third design emerges as the optimum choice for both melting and solidification processes, where for 1 h of melting operation, results obtained 87%, 92%, and 90% for three models, respectively, from the first uniform model to the third model. While for 2 h of solidification the result obtained 11%, 17%, and 13% liquid fraction for the three models, respectively.</description><subject>fin length distribution</subject><subject>melting</subject><subject>optimum</subject><subject>PCM heat exchanger</subject><subject>solidification</subject><issn>2688-4534</issn><issn>2688-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1j7tOwzAYhS0EElXpwBt4ZUjre5IRKqCgIhjCbNmO3bjKpXIcQd-GZ-HJCASxMf1n-M7R_wFwidESI0RWVdwvCUUoPwEzIrIsYZyR079M2TlY9P0ejSzHOCViBm6KysLuEH0zNND59vOjtu0uVrD0fQxeD9F3LewcjEoPtQrwZf0EK6sitO-mUu3Ohgtw5lTd28XvnYPXu9tivUm2z_cP6-ttYgjJ8yQnGJcaMUsyXhrhMqEJd5RSZogitEzHBx0XSKBc25TnmWGUIuxKkWqOhKNzcDXtmtD1fbBOHoJvVDhKjOS3vxz95Y__yK4m9s3X9vg_KDfF49T4AsRJW70</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Saleh, Hussein Hatem</creator><creator>Mussa, Munther Abdullah</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5421-6796</orcidid></search><sort><creationdate>202406</creationdate><title>The optimum fin length distribution of tabular PCM heat exchanger</title><author>Saleh, Hussein Hatem ; Mussa, Munther Abdullah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2299-9211db04e285dc6f86b25f3334c2a23d7453f560609be7598c43301fd67b506f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>fin length distribution</topic><topic>melting</topic><topic>optimum</topic><topic>PCM heat exchanger</topic><topic>solidification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saleh, Hussein Hatem</creatorcontrib><creatorcontrib>Mussa, Munther Abdullah</creatorcontrib><collection>CrossRef</collection><jtitle>Heat transfer (Hoboken, N.J. Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saleh, Hussein Hatem</au><au>Mussa, Munther Abdullah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The optimum fin length distribution of tabular PCM heat exchanger</atitle><jtitle>Heat transfer (Hoboken, N.J. Print)</jtitle><date>2024-06</date><risdate>2024</risdate><volume>53</volume><issue>4</issue><spage>1726</spage><epage>1748</epage><pages>1726-1748</pages><issn>2688-4534</issn><eissn>2688-4542</eissn><abstract>The study aims to find the optimal fin length distribution for improved heat transfer during melting and solidification in a tubular phase change material (PCM) heat exchanger (HE) designed for heat storage. Three types of horizontal PCM tabular HEs, all with five longitudinal fins, were studied numerically. While maintaining a constant heat‐transfer area, each model depicts a unique fin length distribution design. The first model, which serves as the reference design, has a uniform fin length distribution and each fi\n is 30 mm long. The second model has shorter upper and side fins and longer lower fins. The third model has long lower fins but shorter than that of the second model, with short side fins and no change in upper fin length with reference design. The findings indicate that the second model exhibits the best heat‐transfer performance for the melting process, while the first model is most effective for solidification. Interestingly, the third design emerges as the optimum choice for both melting and solidification processes, where for 1 h of melting operation, results obtained 87%, 92%, and 90% for three models, respectively, from the first uniform model to the third model. While for 2 h of solidification the result obtained 11%, 17%, and 13% liquid fraction for the three models, respectively.</abstract><doi>10.1002/htj.23009</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-5421-6796</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2688-4534
ispartof Heat transfer (Hoboken, N.J. Print), 2024-06, Vol.53 (4), p.1726-1748
issn 2688-4534
2688-4542
language eng
recordid cdi_crossref_primary_10_1002_htj_23009
source Access via Wiley Online Library
subjects fin length distribution
melting
optimum
PCM heat exchanger
solidification
title The optimum fin length distribution of tabular PCM heat exchanger
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A44%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20optimum%20fin%C2%A0length%20distribution%20of%20tabular%20PCM%20heat%20exchanger&rft.jtitle=Heat%20transfer%20(Hoboken,%20N.J.%20Print)&rft.au=Saleh,%20Hussein%20Hatem&rft.date=2024-06&rft.volume=53&rft.issue=4&rft.spage=1726&rft.epage=1748&rft.pages=1726-1748&rft.issn=2688-4534&rft.eissn=2688-4542&rft_id=info:doi/10.1002/htj.23009&rft_dat=%3Cwiley_cross%3EHTJ23009%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true