Chemical reaction effects on magnetohydrodynamic convective flow past a vertical absorbent plate with ramped wall temperature and concentration

The numerical analysis is conducted to evaluate the heat generating as well as Soret–Dufour influences on magnetohydrodynamic unsteady chemically reacting fluid. It is owing to an exponentially stimulating perpendicular porous plate entrenched in the absorbent medium by considering ramped surface te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heat transfer (Hoboken, N.J. Print) N.J. Print), 2023-09, Vol.52 (6), p.3914-3935
Hauptverfasser: Harikrushna, M., Prabhakara Rao, G., Mallikarjuna Reddy, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The numerical analysis is conducted to evaluate the heat generating as well as Soret–Dufour influences on magnetohydrodynamic unsteady chemically reacting fluid. It is owing to an exponentially stimulating perpendicular porous plate entrenched in the absorbent medium by considering ramped surface temperatures and concentrations in the endurance of thermal radiating. The fundamental governing set of equations of the fluid dynamics in the flow is converted into dimensionless form by inserting suitable dimensionless parameters and variables, and the resulting equations are numerically solved by the efficient Crank–Nicolson implicit finite difference method. The influence of several important substantial parameters into the model on the velocity, temperature, and concentration of the fluid, in addition to the skin‐frictions coefficient, Nusselt's number along with Sherwood's number for both thermal conditions has been studied and explored intensely by making use of graphs and tables. It is discovered that, with mounting values of Dufour, heat generating as well as thermal radiating parameters, the fluid temperatures, and velocity enhanced. Likewise, it is noticed that increasing the Soret parameter causes escalated fluid velocity and concentration, whereas the reverse result is noted with the chemical reaction parameter.
ISSN:2688-4534
2688-4542
DOI:10.1002/htj.22856