Flow and thermal analysis of Oldroyd 8 constant fluid in a porous channel
The present research is based on the thermal and flow properties of the viscoelastic Oldroyd 8 constant fluid in an upright microchannel. The energy and momentum equations were solved with the support of temperature Jump and velocity slip boundary conditions. To measure the irreversibility rate of t...
Gespeichert in:
Veröffentlicht in: | Heat transfer (Hoboken, N.J. Print) N.J. Print), 2023-03, Vol.52 (2), p.1413-1432 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1432 |
---|---|
container_issue | 2 |
container_start_page | 1413 |
container_title | Heat transfer (Hoboken, N.J. Print) |
container_volume | 52 |
creator | Soumya, D. O. Venkatesh, P. Gireesha, B. J. Gombi, Manohar R. Krishnamurthy, M. R. |
description | The present research is based on the thermal and flow properties of the viscoelastic Oldroyd 8 constant fluid in an upright microchannel. The energy and momentum equations were solved with the support of temperature Jump and velocity slip boundary conditions. To measure the irreversibility rate of the flow system, the acquired results of velocity and thermal equations were used. To crack the current mathematical model problem, the numerical Runge–Kutta–Fehlberg method was used. With the aid of graphs, the effect of physical parameters such as thermal radiation, thermal‐dependent heat source, Joule heating, fluid parameters, velocity slip, and temperature Jump parameters on the fluid flow, thermal energy, and system entropy generation was discussed. Fluid parameters have different effects on the velocity profile. The Grashof and Hartmann numbers demonstrate opposite effects on the momentum field. The thermal energy of the system reduces with thermal radiation and temperature Jump factor. The thermal radiation, Hartmann number, and temperature Jump parameters reduce the system's irreversibility rate. With the Brinkman number and temperature Jump parameter, the irreversibility ratio increases. |
doi_str_mv | 10.1002/htj.22748 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_htj_22748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>HTJ22748</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1998-1bb9ff331539a1b35df9f4f14e788ae78792d7adbcdadd5931119df4808b51543</originalsourceid><addsrcrecordid>eNp1kD1vwjAURa2qlYooQ_-B1w6BPH8Qe6xQKVRILHS2nNhWgoyN7CCUf9-0VN263HeH8-5wEHqGcg5lSRZtf5wTUjFxhyZkKUTBOCP3f52yRzTL-ViOLAeoyHKCtmsfr1gHg_vWppP2Y9d-yF3G0eG9NykOBgvcxJB7HXrs_KUzuAtY43NM8ZJx0-oQrH9CD077bGe_d4o-12-H1abY7d-3q9dd0YCUooC6ls5RCpxKDTXlxknHHDBbCaHHqCQxlTZ1Y7QxXFIAkMYxUYqaA2d0il5uu02KOSfr1Dl1J50GBaX61qBGDepHw8gubuy183b4H1Sbw8ft4wtLZ153</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Flow and thermal analysis of Oldroyd 8 constant fluid in a porous channel</title><source>Wiley Journals</source><creator>Soumya, D. O. ; Venkatesh, P. ; Gireesha, B. J. ; Gombi, Manohar R. ; Krishnamurthy, M. R.</creator><creatorcontrib>Soumya, D. O. ; Venkatesh, P. ; Gireesha, B. J. ; Gombi, Manohar R. ; Krishnamurthy, M. R.</creatorcontrib><description>The present research is based on the thermal and flow properties of the viscoelastic Oldroyd 8 constant fluid in an upright microchannel. The energy and momentum equations were solved with the support of temperature Jump and velocity slip boundary conditions. To measure the irreversibility rate of the flow system, the acquired results of velocity and thermal equations were used. To crack the current mathematical model problem, the numerical Runge–Kutta–Fehlberg method was used. With the aid of graphs, the effect of physical parameters such as thermal radiation, thermal‐dependent heat source, Joule heating, fluid parameters, velocity slip, and temperature Jump parameters on the fluid flow, thermal energy, and system entropy generation was discussed. Fluid parameters have different effects on the velocity profile. The Grashof and Hartmann numbers demonstrate opposite effects on the momentum field. The thermal energy of the system reduces with thermal radiation and temperature Jump factor. The thermal radiation, Hartmann number, and temperature Jump parameters reduce the system's irreversibility rate. With the Brinkman number and temperature Jump parameter, the irreversibility ratio increases.</description><identifier>ISSN: 2688-4534</identifier><identifier>EISSN: 2688-4542</identifier><identifier>DOI: 10.1002/htj.22748</identifier><language>eng</language><subject>Grashof number ; Joule heating ; microchannel ; Oldroyd 8 constant fluid ; temperature Jump boundary condition</subject><ispartof>Heat transfer (Hoboken, N.J. Print), 2023-03, Vol.52 (2), p.1413-1432</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1998-1bb9ff331539a1b35df9f4f14e788ae78792d7adbcdadd5931119df4808b51543</citedby><cites>FETCH-LOGICAL-c1998-1bb9ff331539a1b35df9f4f14e788ae78792d7adbcdadd5931119df4808b51543</cites><orcidid>0000-0002-4761-1082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhtj.22748$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhtj.22748$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Soumya, D. O.</creatorcontrib><creatorcontrib>Venkatesh, P.</creatorcontrib><creatorcontrib>Gireesha, B. J.</creatorcontrib><creatorcontrib>Gombi, Manohar R.</creatorcontrib><creatorcontrib>Krishnamurthy, M. R.</creatorcontrib><title>Flow and thermal analysis of Oldroyd 8 constant fluid in a porous channel</title><title>Heat transfer (Hoboken, N.J. Print)</title><description>The present research is based on the thermal and flow properties of the viscoelastic Oldroyd 8 constant fluid in an upright microchannel. The energy and momentum equations were solved with the support of temperature Jump and velocity slip boundary conditions. To measure the irreversibility rate of the flow system, the acquired results of velocity and thermal equations were used. To crack the current mathematical model problem, the numerical Runge–Kutta–Fehlberg method was used. With the aid of graphs, the effect of physical parameters such as thermal radiation, thermal‐dependent heat source, Joule heating, fluid parameters, velocity slip, and temperature Jump parameters on the fluid flow, thermal energy, and system entropy generation was discussed. Fluid parameters have different effects on the velocity profile. The Grashof and Hartmann numbers demonstrate opposite effects on the momentum field. The thermal energy of the system reduces with thermal radiation and temperature Jump factor. The thermal radiation, Hartmann number, and temperature Jump parameters reduce the system's irreversibility rate. With the Brinkman number and temperature Jump parameter, the irreversibility ratio increases.</description><subject>Grashof number</subject><subject>Joule heating</subject><subject>microchannel</subject><subject>Oldroyd 8 constant fluid</subject><subject>temperature Jump boundary condition</subject><issn>2688-4534</issn><issn>2688-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kD1vwjAURa2qlYooQ_-B1w6BPH8Qe6xQKVRILHS2nNhWgoyN7CCUf9-0VN263HeH8-5wEHqGcg5lSRZtf5wTUjFxhyZkKUTBOCP3f52yRzTL-ViOLAeoyHKCtmsfr1gHg_vWppP2Y9d-yF3G0eG9NykOBgvcxJB7HXrs_KUzuAtY43NM8ZJx0-oQrH9CD077bGe_d4o-12-H1abY7d-3q9dd0YCUooC6ls5RCpxKDTXlxknHHDBbCaHHqCQxlTZ1Y7QxXFIAkMYxUYqaA2d0il5uu02KOSfr1Dl1J50GBaX61qBGDepHw8gubuy183b4H1Sbw8ft4wtLZ153</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Soumya, D. O.</creator><creator>Venkatesh, P.</creator><creator>Gireesha, B. J.</creator><creator>Gombi, Manohar R.</creator><creator>Krishnamurthy, M. R.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4761-1082</orcidid></search><sort><creationdate>202303</creationdate><title>Flow and thermal analysis of Oldroyd 8 constant fluid in a porous channel</title><author>Soumya, D. O. ; Venkatesh, P. ; Gireesha, B. J. ; Gombi, Manohar R. ; Krishnamurthy, M. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1998-1bb9ff331539a1b35df9f4f14e788ae78792d7adbcdadd5931119df4808b51543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Grashof number</topic><topic>Joule heating</topic><topic>microchannel</topic><topic>Oldroyd 8 constant fluid</topic><topic>temperature Jump boundary condition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soumya, D. O.</creatorcontrib><creatorcontrib>Venkatesh, P.</creatorcontrib><creatorcontrib>Gireesha, B. J.</creatorcontrib><creatorcontrib>Gombi, Manohar R.</creatorcontrib><creatorcontrib>Krishnamurthy, M. R.</creatorcontrib><collection>CrossRef</collection><jtitle>Heat transfer (Hoboken, N.J. Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soumya, D. O.</au><au>Venkatesh, P.</au><au>Gireesha, B. J.</au><au>Gombi, Manohar R.</au><au>Krishnamurthy, M. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow and thermal analysis of Oldroyd 8 constant fluid in a porous channel</atitle><jtitle>Heat transfer (Hoboken, N.J. Print)</jtitle><date>2023-03</date><risdate>2023</risdate><volume>52</volume><issue>2</issue><spage>1413</spage><epage>1432</epage><pages>1413-1432</pages><issn>2688-4534</issn><eissn>2688-4542</eissn><abstract>The present research is based on the thermal and flow properties of the viscoelastic Oldroyd 8 constant fluid in an upright microchannel. The energy and momentum equations were solved with the support of temperature Jump and velocity slip boundary conditions. To measure the irreversibility rate of the flow system, the acquired results of velocity and thermal equations were used. To crack the current mathematical model problem, the numerical Runge–Kutta–Fehlberg method was used. With the aid of graphs, the effect of physical parameters such as thermal radiation, thermal‐dependent heat source, Joule heating, fluid parameters, velocity slip, and temperature Jump parameters on the fluid flow, thermal energy, and system entropy generation was discussed. Fluid parameters have different effects on the velocity profile. The Grashof and Hartmann numbers demonstrate opposite effects on the momentum field. The thermal energy of the system reduces with thermal radiation and temperature Jump factor. The thermal radiation, Hartmann number, and temperature Jump parameters reduce the system's irreversibility rate. With the Brinkman number and temperature Jump parameter, the irreversibility ratio increases.</abstract><doi>10.1002/htj.22748</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-4761-1082</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2688-4534 |
ispartof | Heat transfer (Hoboken, N.J. Print), 2023-03, Vol.52 (2), p.1413-1432 |
issn | 2688-4534 2688-4542 |
language | eng |
recordid | cdi_crossref_primary_10_1002_htj_22748 |
source | Wiley Journals |
subjects | Grashof number Joule heating microchannel Oldroyd 8 constant fluid temperature Jump boundary condition |
title | Flow and thermal analysis of Oldroyd 8 constant fluid in a porous channel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A35%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20and%20thermal%20analysis%20of%20Oldroyd%208%20constant%20fluid%20in%20a%20porous%20channel&rft.jtitle=Heat%20transfer%20(Hoboken,%20N.J.%20Print)&rft.au=Soumya,%20D.%20O.&rft.date=2023-03&rft.volume=52&rft.issue=2&rft.spage=1413&rft.epage=1432&rft.pages=1413-1432&rft.issn=2688-4534&rft.eissn=2688-4542&rft_id=info:doi/10.1002/htj.22748&rft_dat=%3Cwiley_cross%3EHTJ22748%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |