Non‐Newtonian electromagnetic fluid flow through a slanted parabolic started Riga surface with ramped energy
The present study deals with the implications of non‐Newtonian fluid via a slanted parabolic started surface with ramped energy. In addition, the characteristics of electrically conducting viscoelastic liquid moving across the Riga surface are investigated systematically, emphasized within the time‐...
Gespeichert in:
Veröffentlicht in: | Heat transfer (Hoboken, N.J. Print) N.J. Print), 2022-09, Vol.51 (6), p.5589-5606 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5606 |
---|---|
container_issue | 6 |
container_start_page | 5589 |
container_title | Heat transfer (Hoboken, N.J. Print) |
container_volume | 51 |
creator | Asogwa, Kanayo Kenneth Goud, B. Shankar Reddy, Yanala Dharmendar |
description | The present study deals with the implications of non‐Newtonian fluid via a slanted parabolic started surface with ramped energy. In addition, the characteristics of electrically conducting viscoelastic liquid moving across the Riga surface are investigated systematically, emphasized within the time‐dependent concentration and temperature variations. The mathematical model is made possible by enforcing momentum and heat conservation principles in the format of partial differential equations (PDEs). Heat considerations are emphasized with respect to radiant heat influx. Similarity characteristics are leveraged to convert PDEs to ordinary differential equations. The Laplace transform method is used to find the exact solutions for the obtained differential configuration. The effect of flow on associated patterns is depicted graphically and with tables. Furthermore, fluctuation in relevant engineering parameters such as wall shear stress, temperature, and mass variability on the surface is measured. The range of parameters selected is as follows:
ψ
[
0.1
‐
1
] $\psi [0.1 \mbox{-} 1]$,
P
r
[
0.71
‐
10
] $Pr[0.71 \mbox{-} 10]$,
S
c
[
0.16
‐
2.01
] $Sc[0.16 \mbox{-} 2.01]$,
G
r
=
G
c
[
5
‐
20
] $Gr=Gc[5 \mbox{-} 20]$,
E
[
1
‐
5
] $E[1 \mbox{-} 5]$, and
R
[
2
‐
10
] $R[2 \mbox{-} 10]$. The analytical and numerical solutions are validated and in good agreement. It is worth reporting that the improved Hartmann number and thermal radiation values boost velocity dispersion and skin friction. As expected, respectively, energy and mass transfer rates are escalated with large values of Prandtl number and Schmidt number. |
doi_str_mv | 10.1002/htj.22560 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_htj_22560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>HTJ22560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1990-c5750a8f440c2547a31fa917df8b1188e473db7127bd3d1304b4085e904aaa493</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EElXpwBt4ZUhrO3btjKgCCqqKhMocXRw7cZUmleMq6sYj8Iw8CS5FbCx3p_u_u-FD6JaSKSWEzeqwnTIm5uQCjdhcqYQLzi7_5pRfo0nfb0lkBaWSzUeoXXft18fn2gyhax202DRGB9_toGpNcBrb5uDKWLsBh9p3h6rGgPsG2mBKvAcPRddErA_gT5s3V8X44C1ogwcXauxht4-BaY2vjjfoykLTm8lvH6P3x4fNYpmsXp-eF_erRNMsI4kWUhBQlnOimeASUmoho7K0qqBUKcNlWhaSMlmUaUlTwgtOlDAZ4QDAs3SM7s5_te_63hub773bgT_mlOQnV3l0lf-4iuzszA6uMcf_wXy5eTlffANs6m1l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non‐Newtonian electromagnetic fluid flow through a slanted parabolic started Riga surface with ramped energy</title><source>Access via Wiley Online Library</source><creator>Asogwa, Kanayo Kenneth ; Goud, B. Shankar ; Reddy, Yanala Dharmendar</creator><creatorcontrib>Asogwa, Kanayo Kenneth ; Goud, B. Shankar ; Reddy, Yanala Dharmendar</creatorcontrib><description>The present study deals with the implications of non‐Newtonian fluid via a slanted parabolic started surface with ramped energy. In addition, the characteristics of electrically conducting viscoelastic liquid moving across the Riga surface are investigated systematically, emphasized within the time‐dependent concentration and temperature variations. The mathematical model is made possible by enforcing momentum and heat conservation principles in the format of partial differential equations (PDEs). Heat considerations are emphasized with respect to radiant heat influx. Similarity characteristics are leveraged to convert PDEs to ordinary differential equations. The Laplace transform method is used to find the exact solutions for the obtained differential configuration. The effect of flow on associated patterns is depicted graphically and with tables. Furthermore, fluctuation in relevant engineering parameters such as wall shear stress, temperature, and mass variability on the surface is measured. The range of parameters selected is as follows:
ψ
[
0.1
‐
1
] $\psi [0.1 \mbox{-} 1]$,
P
r
[
0.71
‐
10
] $Pr[0.71 \mbox{-} 10]$,
S
c
[
0.16
‐
2.01
] $Sc[0.16 \mbox{-} 2.01]$,
G
r
=
G
c
[
5
‐
20
] $Gr=Gc[5 \mbox{-} 20]$,
E
[
1
‐
5
] $E[1 \mbox{-} 5]$, and
R
[
2
‐
10
] $R[2 \mbox{-} 10]$. The analytical and numerical solutions are validated and in good agreement. It is worth reporting that the improved Hartmann number and thermal radiation values boost velocity dispersion and skin friction. As expected, respectively, energy and mass transfer rates are escalated with large values of Prandtl number and Schmidt number.</description><identifier>ISSN: 2688-4534</identifier><identifier>EISSN: 2688-4542</identifier><identifier>DOI: 10.1002/htj.22560</identifier><language>eng</language><subject>Casson fluid ; isothermal temperature ; parabolic motion ; radiation ; ramped temperature ; Riga plate</subject><ispartof>Heat transfer (Hoboken, N.J. Print), 2022-09, Vol.51 (6), p.5589-5606</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1990-c5750a8f440c2547a31fa917df8b1188e473db7127bd3d1304b4085e904aaa493</citedby><cites>FETCH-LOGICAL-c1990-c5750a8f440c2547a31fa917df8b1188e473db7127bd3d1304b4085e904aaa493</cites><orcidid>0000-0002-5623-0492 ; 0000-0003-4543-6505 ; 0000-0002-8926-7259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhtj.22560$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhtj.22560$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Asogwa, Kanayo Kenneth</creatorcontrib><creatorcontrib>Goud, B. Shankar</creatorcontrib><creatorcontrib>Reddy, Yanala Dharmendar</creatorcontrib><title>Non‐Newtonian electromagnetic fluid flow through a slanted parabolic started Riga surface with ramped energy</title><title>Heat transfer (Hoboken, N.J. Print)</title><description>The present study deals with the implications of non‐Newtonian fluid via a slanted parabolic started surface with ramped energy. In addition, the characteristics of electrically conducting viscoelastic liquid moving across the Riga surface are investigated systematically, emphasized within the time‐dependent concentration and temperature variations. The mathematical model is made possible by enforcing momentum and heat conservation principles in the format of partial differential equations (PDEs). Heat considerations are emphasized with respect to radiant heat influx. Similarity characteristics are leveraged to convert PDEs to ordinary differential equations. The Laplace transform method is used to find the exact solutions for the obtained differential configuration. The effect of flow on associated patterns is depicted graphically and with tables. Furthermore, fluctuation in relevant engineering parameters such as wall shear stress, temperature, and mass variability on the surface is measured. The range of parameters selected is as follows:
ψ
[
0.1
‐
1
] $\psi [0.1 \mbox{-} 1]$,
P
r
[
0.71
‐
10
] $Pr[0.71 \mbox{-} 10]$,
S
c
[
0.16
‐
2.01
] $Sc[0.16 \mbox{-} 2.01]$,
G
r
=
G
c
[
5
‐
20
] $Gr=Gc[5 \mbox{-} 20]$,
E
[
1
‐
5
] $E[1 \mbox{-} 5]$, and
R
[
2
‐
10
] $R[2 \mbox{-} 10]$. The analytical and numerical solutions are validated and in good agreement. It is worth reporting that the improved Hartmann number and thermal radiation values boost velocity dispersion and skin friction. As expected, respectively, energy and mass transfer rates are escalated with large values of Prandtl number and Schmidt number.</description><subject>Casson fluid</subject><subject>isothermal temperature</subject><subject>parabolic motion</subject><subject>radiation</subject><subject>ramped temperature</subject><subject>Riga plate</subject><issn>2688-4534</issn><issn>2688-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EElXpwBt4ZUhrO3btjKgCCqqKhMocXRw7cZUmleMq6sYj8Iw8CS5FbCx3p_u_u-FD6JaSKSWEzeqwnTIm5uQCjdhcqYQLzi7_5pRfo0nfb0lkBaWSzUeoXXft18fn2gyhax202DRGB9_toGpNcBrb5uDKWLsBh9p3h6rGgPsG2mBKvAcPRddErA_gT5s3V8X44C1ogwcXauxht4-BaY2vjjfoykLTm8lvH6P3x4fNYpmsXp-eF_erRNMsI4kWUhBQlnOimeASUmoho7K0qqBUKcNlWhaSMlmUaUlTwgtOlDAZ4QDAs3SM7s5_te_63hub773bgT_mlOQnV3l0lf-4iuzszA6uMcf_wXy5eTlffANs6m1l</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Asogwa, Kanayo Kenneth</creator><creator>Goud, B. Shankar</creator><creator>Reddy, Yanala Dharmendar</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5623-0492</orcidid><orcidid>https://orcid.org/0000-0003-4543-6505</orcidid><orcidid>https://orcid.org/0000-0002-8926-7259</orcidid></search><sort><creationdate>202209</creationdate><title>Non‐Newtonian electromagnetic fluid flow through a slanted parabolic started Riga surface with ramped energy</title><author>Asogwa, Kanayo Kenneth ; Goud, B. Shankar ; Reddy, Yanala Dharmendar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1990-c5750a8f440c2547a31fa917df8b1188e473db7127bd3d1304b4085e904aaa493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Casson fluid</topic><topic>isothermal temperature</topic><topic>parabolic motion</topic><topic>radiation</topic><topic>ramped temperature</topic><topic>Riga plate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asogwa, Kanayo Kenneth</creatorcontrib><creatorcontrib>Goud, B. Shankar</creatorcontrib><creatorcontrib>Reddy, Yanala Dharmendar</creatorcontrib><collection>CrossRef</collection><jtitle>Heat transfer (Hoboken, N.J. Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asogwa, Kanayo Kenneth</au><au>Goud, B. Shankar</au><au>Reddy, Yanala Dharmendar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐Newtonian electromagnetic fluid flow through a slanted parabolic started Riga surface with ramped energy</atitle><jtitle>Heat transfer (Hoboken, N.J. Print)</jtitle><date>2022-09</date><risdate>2022</risdate><volume>51</volume><issue>6</issue><spage>5589</spage><epage>5606</epage><pages>5589-5606</pages><issn>2688-4534</issn><eissn>2688-4542</eissn><abstract>The present study deals with the implications of non‐Newtonian fluid via a slanted parabolic started surface with ramped energy. In addition, the characteristics of electrically conducting viscoelastic liquid moving across the Riga surface are investigated systematically, emphasized within the time‐dependent concentration and temperature variations. The mathematical model is made possible by enforcing momentum and heat conservation principles in the format of partial differential equations (PDEs). Heat considerations are emphasized with respect to radiant heat influx. Similarity characteristics are leveraged to convert PDEs to ordinary differential equations. The Laplace transform method is used to find the exact solutions for the obtained differential configuration. The effect of flow on associated patterns is depicted graphically and with tables. Furthermore, fluctuation in relevant engineering parameters such as wall shear stress, temperature, and mass variability on the surface is measured. The range of parameters selected is as follows:
ψ
[
0.1
‐
1
] $\psi [0.1 \mbox{-} 1]$,
P
r
[
0.71
‐
10
] $Pr[0.71 \mbox{-} 10]$,
S
c
[
0.16
‐
2.01
] $Sc[0.16 \mbox{-} 2.01]$,
G
r
=
G
c
[
5
‐
20
] $Gr=Gc[5 \mbox{-} 20]$,
E
[
1
‐
5
] $E[1 \mbox{-} 5]$, and
R
[
2
‐
10
] $R[2 \mbox{-} 10]$. The analytical and numerical solutions are validated and in good agreement. It is worth reporting that the improved Hartmann number and thermal radiation values boost velocity dispersion and skin friction. As expected, respectively, energy and mass transfer rates are escalated with large values of Prandtl number and Schmidt number.</abstract><doi>10.1002/htj.22560</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5623-0492</orcidid><orcidid>https://orcid.org/0000-0003-4543-6505</orcidid><orcidid>https://orcid.org/0000-0002-8926-7259</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2688-4534 |
ispartof | Heat transfer (Hoboken, N.J. Print), 2022-09, Vol.51 (6), p.5589-5606 |
issn | 2688-4534 2688-4542 |
language | eng |
recordid | cdi_crossref_primary_10_1002_htj_22560 |
source | Access via Wiley Online Library |
subjects | Casson fluid isothermal temperature parabolic motion radiation ramped temperature Riga plate |
title | Non‐Newtonian electromagnetic fluid flow through a slanted parabolic started Riga surface with ramped energy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A58%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90Newtonian%20electromagnetic%20fluid%20flow%20through%20a%20slanted%20parabolic%20started%20Riga%20surface%20with%20ramped%20energy&rft.jtitle=Heat%20transfer%20(Hoboken,%20N.J.%20Print)&rft.au=Asogwa,%20Kanayo%20Kenneth&rft.date=2022-09&rft.volume=51&rft.issue=6&rft.spage=5589&rft.epage=5606&rft.pages=5589-5606&rft.issn=2688-4534&rft.eissn=2688-4542&rft_id=info:doi/10.1002/htj.22560&rft_dat=%3Cwiley_cross%3EHTJ22560%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |