Non‐Newtonian electromagnetic fluid flow through a slanted parabolic started Riga surface with ramped energy

The present study deals with the implications of non‐Newtonian fluid via a slanted parabolic started surface with ramped energy. In addition, the characteristics of electrically conducting viscoelastic liquid moving across the Riga surface are investigated systematically, emphasized within the time‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heat transfer (Hoboken, N.J. Print) N.J. Print), 2022-09, Vol.51 (6), p.5589-5606
Hauptverfasser: Asogwa, Kanayo Kenneth, Goud, B. Shankar, Reddy, Yanala Dharmendar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5606
container_issue 6
container_start_page 5589
container_title Heat transfer (Hoboken, N.J. Print)
container_volume 51
creator Asogwa, Kanayo Kenneth
Goud, B. Shankar
Reddy, Yanala Dharmendar
description The present study deals with the implications of non‐Newtonian fluid via a slanted parabolic started surface with ramped energy. In addition, the characteristics of electrically conducting viscoelastic liquid moving across the Riga surface are investigated systematically, emphasized within the time‐dependent concentration and temperature variations. The mathematical model is made possible by enforcing momentum and heat conservation principles in the format of partial differential equations (PDEs). Heat considerations are emphasized with respect to radiant heat influx. Similarity characteristics are leveraged to convert PDEs to ordinary differential equations. The Laplace transform method is used to find the exact solutions for the obtained differential configuration. The effect of flow on associated patterns is depicted graphically and with tables. Furthermore, fluctuation in relevant engineering parameters such as wall shear stress, temperature, and mass variability on the surface is measured. The range of parameters selected is as follows:  ψ [ 0.1 ‐ 1 ] $\psi [0.1 \mbox{-} 1]$, P r [ 0.71 ‐ 10 ] $Pr[0.71 \mbox{-} 10]$, S c [ 0.16 ‐ 2.01 ] $Sc[0.16 \mbox{-} 2.01]$, G r = G c [ 5 ‐ 20 ] $Gr=Gc[5 \mbox{-} 20]$, E [ 1 ‐ 5 ] $E[1 \mbox{-} 5]$, and  R [ 2 ‐ 10 ] $R[2 \mbox{-} 10]$. The analytical and numerical solutions are validated and in good agreement. It is worth reporting that the improved Hartmann number and thermal radiation values boost velocity dispersion and skin friction. As expected, respectively, energy and mass transfer rates are escalated with large values of Prandtl number and Schmidt number.
doi_str_mv 10.1002/htj.22560
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_htj_22560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>HTJ22560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1990-c5750a8f440c2547a31fa917df8b1188e473db7127bd3d1304b4085e904aaa493</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EElXpwBt4ZUhrO3btjKgCCqqKhMocXRw7cZUmleMq6sYj8Iw8CS5FbCx3p_u_u-FD6JaSKSWEzeqwnTIm5uQCjdhcqYQLzi7_5pRfo0nfb0lkBaWSzUeoXXft18fn2gyhax202DRGB9_toGpNcBrb5uDKWLsBh9p3h6rGgPsG2mBKvAcPRddErA_gT5s3V8X44C1ogwcXauxht4-BaY2vjjfoykLTm8lvH6P3x4fNYpmsXp-eF_erRNMsI4kWUhBQlnOimeASUmoho7K0qqBUKcNlWhaSMlmUaUlTwgtOlDAZ4QDAs3SM7s5_te_63hub773bgT_mlOQnV3l0lf-4iuzszA6uMcf_wXy5eTlffANs6m1l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non‐Newtonian electromagnetic fluid flow through a slanted parabolic started Riga surface with ramped energy</title><source>Access via Wiley Online Library</source><creator>Asogwa, Kanayo Kenneth ; Goud, B. Shankar ; Reddy, Yanala Dharmendar</creator><creatorcontrib>Asogwa, Kanayo Kenneth ; Goud, B. Shankar ; Reddy, Yanala Dharmendar</creatorcontrib><description>The present study deals with the implications of non‐Newtonian fluid via a slanted parabolic started surface with ramped energy. In addition, the characteristics of electrically conducting viscoelastic liquid moving across the Riga surface are investigated systematically, emphasized within the time‐dependent concentration and temperature variations. The mathematical model is made possible by enforcing momentum and heat conservation principles in the format of partial differential equations (PDEs). Heat considerations are emphasized with respect to radiant heat influx. Similarity characteristics are leveraged to convert PDEs to ordinary differential equations. The Laplace transform method is used to find the exact solutions for the obtained differential configuration. The effect of flow on associated patterns is depicted graphically and with tables. Furthermore, fluctuation in relevant engineering parameters such as wall shear stress, temperature, and mass variability on the surface is measured. The range of parameters selected is as follows:  ψ [ 0.1 ‐ 1 ] $\psi [0.1 \mbox{-} 1]$, P r [ 0.71 ‐ 10 ] $Pr[0.71 \mbox{-} 10]$, S c [ 0.16 ‐ 2.01 ] $Sc[0.16 \mbox{-} 2.01]$, G r = G c [ 5 ‐ 20 ] $Gr=Gc[5 \mbox{-} 20]$, E [ 1 ‐ 5 ] $E[1 \mbox{-} 5]$, and  R [ 2 ‐ 10 ] $R[2 \mbox{-} 10]$. The analytical and numerical solutions are validated and in good agreement. It is worth reporting that the improved Hartmann number and thermal radiation values boost velocity dispersion and skin friction. As expected, respectively, energy and mass transfer rates are escalated with large values of Prandtl number and Schmidt number.</description><identifier>ISSN: 2688-4534</identifier><identifier>EISSN: 2688-4542</identifier><identifier>DOI: 10.1002/htj.22560</identifier><language>eng</language><subject>Casson fluid ; isothermal temperature ; parabolic motion ; radiation ; ramped temperature ; Riga plate</subject><ispartof>Heat transfer (Hoboken, N.J. Print), 2022-09, Vol.51 (6), p.5589-5606</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1990-c5750a8f440c2547a31fa917df8b1188e473db7127bd3d1304b4085e904aaa493</citedby><cites>FETCH-LOGICAL-c1990-c5750a8f440c2547a31fa917df8b1188e473db7127bd3d1304b4085e904aaa493</cites><orcidid>0000-0002-5623-0492 ; 0000-0003-4543-6505 ; 0000-0002-8926-7259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhtj.22560$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhtj.22560$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Asogwa, Kanayo Kenneth</creatorcontrib><creatorcontrib>Goud, B. Shankar</creatorcontrib><creatorcontrib>Reddy, Yanala Dharmendar</creatorcontrib><title>Non‐Newtonian electromagnetic fluid flow through a slanted parabolic started Riga surface with ramped energy</title><title>Heat transfer (Hoboken, N.J. Print)</title><description>The present study deals with the implications of non‐Newtonian fluid via a slanted parabolic started surface with ramped energy. In addition, the characteristics of electrically conducting viscoelastic liquid moving across the Riga surface are investigated systematically, emphasized within the time‐dependent concentration and temperature variations. The mathematical model is made possible by enforcing momentum and heat conservation principles in the format of partial differential equations (PDEs). Heat considerations are emphasized with respect to radiant heat influx. Similarity characteristics are leveraged to convert PDEs to ordinary differential equations. The Laplace transform method is used to find the exact solutions for the obtained differential configuration. The effect of flow on associated patterns is depicted graphically and with tables. Furthermore, fluctuation in relevant engineering parameters such as wall shear stress, temperature, and mass variability on the surface is measured. The range of parameters selected is as follows:  ψ [ 0.1 ‐ 1 ] $\psi [0.1 \mbox{-} 1]$, P r [ 0.71 ‐ 10 ] $Pr[0.71 \mbox{-} 10]$, S c [ 0.16 ‐ 2.01 ] $Sc[0.16 \mbox{-} 2.01]$, G r = G c [ 5 ‐ 20 ] $Gr=Gc[5 \mbox{-} 20]$, E [ 1 ‐ 5 ] $E[1 \mbox{-} 5]$, and  R [ 2 ‐ 10 ] $R[2 \mbox{-} 10]$. The analytical and numerical solutions are validated and in good agreement. It is worth reporting that the improved Hartmann number and thermal radiation values boost velocity dispersion and skin friction. As expected, respectively, energy and mass transfer rates are escalated with large values of Prandtl number and Schmidt number.</description><subject>Casson fluid</subject><subject>isothermal temperature</subject><subject>parabolic motion</subject><subject>radiation</subject><subject>ramped temperature</subject><subject>Riga plate</subject><issn>2688-4534</issn><issn>2688-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EElXpwBt4ZUhrO3btjKgCCqqKhMocXRw7cZUmleMq6sYj8Iw8CS5FbCx3p_u_u-FD6JaSKSWEzeqwnTIm5uQCjdhcqYQLzi7_5pRfo0nfb0lkBaWSzUeoXXft18fn2gyhax202DRGB9_toGpNcBrb5uDKWLsBh9p3h6rGgPsG2mBKvAcPRddErA_gT5s3V8X44C1ogwcXauxht4-BaY2vjjfoykLTm8lvH6P3x4fNYpmsXp-eF_erRNMsI4kWUhBQlnOimeASUmoho7K0qqBUKcNlWhaSMlmUaUlTwgtOlDAZ4QDAs3SM7s5_te_63hub773bgT_mlOQnV3l0lf-4iuzszA6uMcf_wXy5eTlffANs6m1l</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Asogwa, Kanayo Kenneth</creator><creator>Goud, B. Shankar</creator><creator>Reddy, Yanala Dharmendar</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5623-0492</orcidid><orcidid>https://orcid.org/0000-0003-4543-6505</orcidid><orcidid>https://orcid.org/0000-0002-8926-7259</orcidid></search><sort><creationdate>202209</creationdate><title>Non‐Newtonian electromagnetic fluid flow through a slanted parabolic started Riga surface with ramped energy</title><author>Asogwa, Kanayo Kenneth ; Goud, B. Shankar ; Reddy, Yanala Dharmendar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1990-c5750a8f440c2547a31fa917df8b1188e473db7127bd3d1304b4085e904aaa493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Casson fluid</topic><topic>isothermal temperature</topic><topic>parabolic motion</topic><topic>radiation</topic><topic>ramped temperature</topic><topic>Riga plate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asogwa, Kanayo Kenneth</creatorcontrib><creatorcontrib>Goud, B. Shankar</creatorcontrib><creatorcontrib>Reddy, Yanala Dharmendar</creatorcontrib><collection>CrossRef</collection><jtitle>Heat transfer (Hoboken, N.J. Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asogwa, Kanayo Kenneth</au><au>Goud, B. Shankar</au><au>Reddy, Yanala Dharmendar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐Newtonian electromagnetic fluid flow through a slanted parabolic started Riga surface with ramped energy</atitle><jtitle>Heat transfer (Hoboken, N.J. Print)</jtitle><date>2022-09</date><risdate>2022</risdate><volume>51</volume><issue>6</issue><spage>5589</spage><epage>5606</epage><pages>5589-5606</pages><issn>2688-4534</issn><eissn>2688-4542</eissn><abstract>The present study deals with the implications of non‐Newtonian fluid via a slanted parabolic started surface with ramped energy. In addition, the characteristics of electrically conducting viscoelastic liquid moving across the Riga surface are investigated systematically, emphasized within the time‐dependent concentration and temperature variations. The mathematical model is made possible by enforcing momentum and heat conservation principles in the format of partial differential equations (PDEs). Heat considerations are emphasized with respect to radiant heat influx. Similarity characteristics are leveraged to convert PDEs to ordinary differential equations. The Laplace transform method is used to find the exact solutions for the obtained differential configuration. The effect of flow on associated patterns is depicted graphically and with tables. Furthermore, fluctuation in relevant engineering parameters such as wall shear stress, temperature, and mass variability on the surface is measured. The range of parameters selected is as follows:  ψ [ 0.1 ‐ 1 ] $\psi [0.1 \mbox{-} 1]$, P r [ 0.71 ‐ 10 ] $Pr[0.71 \mbox{-} 10]$, S c [ 0.16 ‐ 2.01 ] $Sc[0.16 \mbox{-} 2.01]$, G r = G c [ 5 ‐ 20 ] $Gr=Gc[5 \mbox{-} 20]$, E [ 1 ‐ 5 ] $E[1 \mbox{-} 5]$, and  R [ 2 ‐ 10 ] $R[2 \mbox{-} 10]$. The analytical and numerical solutions are validated and in good agreement. It is worth reporting that the improved Hartmann number and thermal radiation values boost velocity dispersion and skin friction. As expected, respectively, energy and mass transfer rates are escalated with large values of Prandtl number and Schmidt number.</abstract><doi>10.1002/htj.22560</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5623-0492</orcidid><orcidid>https://orcid.org/0000-0003-4543-6505</orcidid><orcidid>https://orcid.org/0000-0002-8926-7259</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2688-4534
ispartof Heat transfer (Hoboken, N.J. Print), 2022-09, Vol.51 (6), p.5589-5606
issn 2688-4534
2688-4542
language eng
recordid cdi_crossref_primary_10_1002_htj_22560
source Access via Wiley Online Library
subjects Casson fluid
isothermal temperature
parabolic motion
radiation
ramped temperature
Riga plate
title Non‐Newtonian electromagnetic fluid flow through a slanted parabolic started Riga surface with ramped energy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A58%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90Newtonian%20electromagnetic%20fluid%20flow%20through%20a%20slanted%20parabolic%20started%20Riga%20surface%20with%20ramped%20energy&rft.jtitle=Heat%20transfer%20(Hoboken,%20N.J.%20Print)&rft.au=Asogwa,%20Kanayo%20Kenneth&rft.date=2022-09&rft.volume=51&rft.issue=6&rft.spage=5589&rft.epage=5606&rft.pages=5589-5606&rft.issn=2688-4534&rft.eissn=2688-4542&rft_id=info:doi/10.1002/htj.22560&rft_dat=%3Cwiley_cross%3EHTJ22560%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true