Forced convection heat transfer of Williamson fluid flow in porous media over horizontal plate with constant heat flux

Forced convection of Williamson fluid flow in porous media under constant surface heat flux conditions is investigated numerically. A model of Darcy–Forchheimer–Brinkman is used and the corresponding governing equations are expressed in dimensionless forms and solved numerically using bvp4c with MAT...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heat transfer (Hoboken, N.J. Print) N.J. Print), 2022-07, Vol.51 (5), p.4504-4521
Hauptverfasser: Quran, Omar, Maaitah, Hussein, Awad, Ahmad S., Elayyan, Mutaz, Duwairi, Hamzeh M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4521
container_issue 5
container_start_page 4504
container_title Heat transfer (Hoboken, N.J. Print)
container_volume 51
creator Quran, Omar
Maaitah, Hussein
Awad, Ahmad S.
Elayyan, Mutaz
Duwairi, Hamzeh M.
description Forced convection of Williamson fluid flow in porous media under constant surface heat flux conditions is investigated numerically. A model of Darcy–Forchheimer–Brinkman is used and the corresponding governing equations are expressed in dimensionless forms and solved numerically using bvp4c with MATLAB package. Boundary layer velocity, shear stress, and temperature profiles, in addition to the local Nusselt number parameter over a horizontal plate, are found. The effects of the Forchheimer parameter, Nusselt number, Darcy parameter, porous inertia, and Williamson parameter on the velocity profiles, temperature profiles, coefficient of friction, and coefficient of heat transfer are investigated. The results showed that as the Darcy parameter increases, boundary layer velocity and shear stress increase, while the temperature and Nusselt number decrease. In addition, as Williamson's parameter increases, velocity within the boundary layer, shear stress, and Nusselt number decrease while the temperature profile increases. Also, with larger values of the Forchheimer parameter, the velocity of the boundary layer, shear stress, temperature, and Nusselt number increase. Furthermore, the Nusselt number and the coefficient of friction are obtained on the surface of the horizontal plate.
doi_str_mv 10.1002/htj.22510
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_htj_22510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>HTJ22510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1990-4baf14b1aa6e5c8102177c0a2a0a63965ac0a50fc68fadb67d88f725fcd2748f3</originalsourceid><addsrcrecordid>eNp1kM1OAjEURhujiQRZ-Abduhhoy7RTloaIaEjcYFxOLp02U1KmpC0gPr3FMe7c3J_cc8_iQ-iekjElhE3atB0zxim5QgMmpCxKXrLrv3la3qJRjFuSWU5pxcQAHRc-KN1g5bujVsn6DrcaEk4Bumh0wN7gD-uchV3MN-MOtsnVn7Dt8N4Hf4h4pxsL2B8z3fpgv3yXwOG9g6Txyab2Io8JutSrs-PzDt0YcFGPfvsQvS-e1vNlsXp7fpk_rgpFZzNSlBswtNxQAKG5kpQwWlWKAAMCYjoTHPLCiVFCGmg2omqkNBXjRjWsKqWZDtFD71XBxxi0qffB7iCca0rqS2Z1zqz-ySyzk549WafP_4P1cv3af3wDx-pwfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Forced convection heat transfer of Williamson fluid flow in porous media over horizontal plate with constant heat flux</title><source>Access via Wiley Online Library</source><creator>Quran, Omar ; Maaitah, Hussein ; Awad, Ahmad S. ; Elayyan, Mutaz ; Duwairi, Hamzeh M.</creator><creatorcontrib>Quran, Omar ; Maaitah, Hussein ; Awad, Ahmad S. ; Elayyan, Mutaz ; Duwairi, Hamzeh M.</creatorcontrib><description>Forced convection of Williamson fluid flow in porous media under constant surface heat flux conditions is investigated numerically. A model of Darcy–Forchheimer–Brinkman is used and the corresponding governing equations are expressed in dimensionless forms and solved numerically using bvp4c with MATLAB package. Boundary layer velocity, shear stress, and temperature profiles, in addition to the local Nusselt number parameter over a horizontal plate, are found. The effects of the Forchheimer parameter, Nusselt number, Darcy parameter, porous inertia, and Williamson parameter on the velocity profiles, temperature profiles, coefficient of friction, and coefficient of heat transfer are investigated. The results showed that as the Darcy parameter increases, boundary layer velocity and shear stress increase, while the temperature and Nusselt number decrease. In addition, as Williamson's parameter increases, velocity within the boundary layer, shear stress, and Nusselt number decrease while the temperature profile increases. Also, with larger values of the Forchheimer parameter, the velocity of the boundary layer, shear stress, temperature, and Nusselt number increase. Furthermore, the Nusselt number and the coefficient of friction are obtained on the surface of the horizontal plate.</description><identifier>ISSN: 2688-4534</identifier><identifier>EISSN: 2688-4542</identifier><identifier>DOI: 10.1002/htj.22510</identifier><language>eng</language><subject>constant heat flux ; Darcy–Forchheimer‐Brinkman model ; porosity ; shooting technique ; Williamson fluid</subject><ispartof>Heat transfer (Hoboken, N.J. Print), 2022-07, Vol.51 (5), p.4504-4521</ispartof><rights>2022 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1990-4baf14b1aa6e5c8102177c0a2a0a63965ac0a50fc68fadb67d88f725fcd2748f3</citedby><cites>FETCH-LOGICAL-c1990-4baf14b1aa6e5c8102177c0a2a0a63965ac0a50fc68fadb67d88f725fcd2748f3</cites><orcidid>0000-0003-4400-6044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhtj.22510$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhtj.22510$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Quran, Omar</creatorcontrib><creatorcontrib>Maaitah, Hussein</creatorcontrib><creatorcontrib>Awad, Ahmad S.</creatorcontrib><creatorcontrib>Elayyan, Mutaz</creatorcontrib><creatorcontrib>Duwairi, Hamzeh M.</creatorcontrib><title>Forced convection heat transfer of Williamson fluid flow in porous media over horizontal plate with constant heat flux</title><title>Heat transfer (Hoboken, N.J. Print)</title><description>Forced convection of Williamson fluid flow in porous media under constant surface heat flux conditions is investigated numerically. A model of Darcy–Forchheimer–Brinkman is used and the corresponding governing equations are expressed in dimensionless forms and solved numerically using bvp4c with MATLAB package. Boundary layer velocity, shear stress, and temperature profiles, in addition to the local Nusselt number parameter over a horizontal plate, are found. The effects of the Forchheimer parameter, Nusselt number, Darcy parameter, porous inertia, and Williamson parameter on the velocity profiles, temperature profiles, coefficient of friction, and coefficient of heat transfer are investigated. The results showed that as the Darcy parameter increases, boundary layer velocity and shear stress increase, while the temperature and Nusselt number decrease. In addition, as Williamson's parameter increases, velocity within the boundary layer, shear stress, and Nusselt number decrease while the temperature profile increases. Also, with larger values of the Forchheimer parameter, the velocity of the boundary layer, shear stress, temperature, and Nusselt number increase. Furthermore, the Nusselt number and the coefficient of friction are obtained on the surface of the horizontal plate.</description><subject>constant heat flux</subject><subject>Darcy–Forchheimer‐Brinkman model</subject><subject>porosity</subject><subject>shooting technique</subject><subject>Williamson fluid</subject><issn>2688-4534</issn><issn>2688-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OAjEURhujiQRZ-Abduhhoy7RTloaIaEjcYFxOLp02U1KmpC0gPr3FMe7c3J_cc8_iQ-iekjElhE3atB0zxim5QgMmpCxKXrLrv3la3qJRjFuSWU5pxcQAHRc-KN1g5bujVsn6DrcaEk4Bumh0wN7gD-uchV3MN-MOtsnVn7Dt8N4Hf4h4pxsL2B8z3fpgv3yXwOG9g6Txyab2Io8JutSrs-PzDt0YcFGPfvsQvS-e1vNlsXp7fpk_rgpFZzNSlBswtNxQAKG5kpQwWlWKAAMCYjoTHPLCiVFCGmg2omqkNBXjRjWsKqWZDtFD71XBxxi0qffB7iCca0rqS2Z1zqz-ySyzk549WafP_4P1cv3af3wDx-pwfA</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Quran, Omar</creator><creator>Maaitah, Hussein</creator><creator>Awad, Ahmad S.</creator><creator>Elayyan, Mutaz</creator><creator>Duwairi, Hamzeh M.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4400-6044</orcidid></search><sort><creationdate>202207</creationdate><title>Forced convection heat transfer of Williamson fluid flow in porous media over horizontal plate with constant heat flux</title><author>Quran, Omar ; Maaitah, Hussein ; Awad, Ahmad S. ; Elayyan, Mutaz ; Duwairi, Hamzeh M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1990-4baf14b1aa6e5c8102177c0a2a0a63965ac0a50fc68fadb67d88f725fcd2748f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>constant heat flux</topic><topic>Darcy–Forchheimer‐Brinkman model</topic><topic>porosity</topic><topic>shooting technique</topic><topic>Williamson fluid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quran, Omar</creatorcontrib><creatorcontrib>Maaitah, Hussein</creatorcontrib><creatorcontrib>Awad, Ahmad S.</creatorcontrib><creatorcontrib>Elayyan, Mutaz</creatorcontrib><creatorcontrib>Duwairi, Hamzeh M.</creatorcontrib><collection>CrossRef</collection><jtitle>Heat transfer (Hoboken, N.J. Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quran, Omar</au><au>Maaitah, Hussein</au><au>Awad, Ahmad S.</au><au>Elayyan, Mutaz</au><au>Duwairi, Hamzeh M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forced convection heat transfer of Williamson fluid flow in porous media over horizontal plate with constant heat flux</atitle><jtitle>Heat transfer (Hoboken, N.J. Print)</jtitle><date>2022-07</date><risdate>2022</risdate><volume>51</volume><issue>5</issue><spage>4504</spage><epage>4521</epage><pages>4504-4521</pages><issn>2688-4534</issn><eissn>2688-4542</eissn><abstract>Forced convection of Williamson fluid flow in porous media under constant surface heat flux conditions is investigated numerically. A model of Darcy–Forchheimer–Brinkman is used and the corresponding governing equations are expressed in dimensionless forms and solved numerically using bvp4c with MATLAB package. Boundary layer velocity, shear stress, and temperature profiles, in addition to the local Nusselt number parameter over a horizontal plate, are found. The effects of the Forchheimer parameter, Nusselt number, Darcy parameter, porous inertia, and Williamson parameter on the velocity profiles, temperature profiles, coefficient of friction, and coefficient of heat transfer are investigated. The results showed that as the Darcy parameter increases, boundary layer velocity and shear stress increase, while the temperature and Nusselt number decrease. In addition, as Williamson's parameter increases, velocity within the boundary layer, shear stress, and Nusselt number decrease while the temperature profile increases. Also, with larger values of the Forchheimer parameter, the velocity of the boundary layer, shear stress, temperature, and Nusselt number increase. Furthermore, the Nusselt number and the coefficient of friction are obtained on the surface of the horizontal plate.</abstract><doi>10.1002/htj.22510</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4400-6044</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2688-4534
ispartof Heat transfer (Hoboken, N.J. Print), 2022-07, Vol.51 (5), p.4504-4521
issn 2688-4534
2688-4542
language eng
recordid cdi_crossref_primary_10_1002_htj_22510
source Access via Wiley Online Library
subjects constant heat flux
Darcy–Forchheimer‐Brinkman model
porosity
shooting technique
Williamson fluid
title Forced convection heat transfer of Williamson fluid flow in porous media over horizontal plate with constant heat flux
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forced%20convection%20heat%20transfer%20of%20Williamson%20fluid%20flow%20in%20porous%20media%20over%20horizontal%20plate%20with%20constant%20heat%20flux&rft.jtitle=Heat%20transfer%20(Hoboken,%20N.J.%20Print)&rft.au=Quran,%20Omar&rft.date=2022-07&rft.volume=51&rft.issue=5&rft.spage=4504&rft.epage=4521&rft.pages=4504-4521&rft.issn=2688-4534&rft.eissn=2688-4542&rft_id=info:doi/10.1002/htj.22510&rft_dat=%3Cwiley_cross%3EHTJ22510%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true