Engineered Anti‐GPC3 Immunotoxin, HN3‐ABD‐T20, Produces Regression in Mouse Liver Cancer Xenografts Through Prolonged Serum Retention

Background and Aims Treatment of hepatocellular carcinomas using our glypican‐3 (GPC3)‐targeting human nanobody (HN3) immunotoxins causes potent tumor regression by blocking protein synthesis and down‐regulating the Wnt signaling pathway. However, immunogenicity and a short serum half‐life may limit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hepatology (Baltimore, Md.) Md.), 2020-05, Vol.71 (5), p.1696-1711
Hauptverfasser: Fleming, Bryan D., Urban, Daniel J., Hall, Matthew D., Longerich, Thomas, Greten, Tim F., Pastan, Ira, Ho, Mitchell
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1711
container_issue 5
container_start_page 1696
container_title Hepatology (Baltimore, Md.)
container_volume 71
creator Fleming, Bryan D.
Urban, Daniel J.
Hall, Matthew D.
Longerich, Thomas
Greten, Tim F.
Pastan, Ira
Ho, Mitchell
description Background and Aims Treatment of hepatocellular carcinomas using our glypican‐3 (GPC3)‐targeting human nanobody (HN3) immunotoxins causes potent tumor regression by blocking protein synthesis and down‐regulating the Wnt signaling pathway. However, immunogenicity and a short serum half‐life may limit the ability of immunotoxins to transition to the clinic. Approach and Results To address these concerns, we engineered HN3‐based immunotoxins to contain various deimmunized Pseudomonas exotoxin (PE) domains. This included HN3‐T20, which was modified to remove T‐cell epitopes and contains a PE domain II truncation. We compared them to our previously reported B‐cell deimmunized immunotoxin (HN3‐mPE24) and our original HN3‐immunotoxin with a wild‐type PE domain (HN3‐PE38). All of our immunotoxins displayed high affinity to human GPC3, with HN3‐T20 having a KD value of 7.4 nM. HN3‐T20 retained 73% enzymatic activity when compared with the wild‐type immunotoxin in an adenosine diphosphate–ribosylation assay. Interestingly, a real‐time cell growth inhibition assay demonstrated that a single dose of HN3‐T20 at 62.5 ng/mL (1.6 nM) was capable of inhibiting nearly all cell proliferation during the 10‐day experiment. To enhance HN3‐T20’s serum retention, we tested the effect of adding a streptococcal albumin‐binding domain (ABD) and a llama single‐domain antibody fragment specific for mouse and human serum albumin. For the detection of immunotoxin in mouse serum, we developed a highly sensitive enzyme‐linked immunosorbent assay and found that HN3‐ABD‐T20 had a 45‐fold higher serum half‐life than HN3‐T20 (326 minutes vs. 7.3 minutes); consequently, addition of an ABD resulted in HN3‐ABD‐T20–mediated tumor regression at 1 mg/kg. Conclusion These data indicate that ABD‐containing deimmunized HN3‐T20 immunotoxins are high‐potency therapeutics ready to be evaluated in clinical trials for the treatment of liver cancer.
doi_str_mv 10.1002/hep.30949
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_hep_30949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395620424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3889-c74e9ee0f67ed42e234a22e8ec4572227c6e2b39a18722894b3d5c137bafdc883</originalsourceid><addsrcrecordid>eNp1kEFP2zAUxy3ERDvgwBdAljhNItR5Thr72GWFVuq2Cjpptyh1XtKgxu7sZBs37lz4jPskcxfgtouf_PR7v7_0J-QsZFchYzDa4O6KMxnJAzIMY0gCzmN2SIYMEhbIkMsBee_cPWOeAXFEBtxTLAYxJE9TXdUa0WJBJ7qt_zw-3yxTTudN02nTmt-1vqSzL9zvJx8_-XcF7JIurSk6hY7eYmXRudpoWmv62XQO6aL-iZamuVZ-fEdtKpuXraOrjTVdtdkfb42ufOAd2q7xjhZ9stEn5F2Zbx2evsxj8u16ukpnweLrzTydLALFhZCBSiKUiKwcJ1hEgMCjHAAFqihOACBRY4Q1l3ko_FfIaM2LWIU8WedloYTgx-Si9-6s-dGha7N701ntIzPgMh4DiyDy1IeeUtY4Z7HMdrZucvuQhSzb15752rN_tXv2_MXYrRss3sjXnj0w6oFf9RYf_m_KZtNlr_wLOXyOkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395620424</pqid></control><display><type>article</type><title>Engineered Anti‐GPC3 Immunotoxin, HN3‐ABD‐T20, Produces Regression in Mouse Liver Cancer Xenografts Through Prolonged Serum Retention</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Fleming, Bryan D. ; Urban, Daniel J. ; Hall, Matthew D. ; Longerich, Thomas ; Greten, Tim F. ; Pastan, Ira ; Ho, Mitchell</creator><creatorcontrib>Fleming, Bryan D. ; Urban, Daniel J. ; Hall, Matthew D. ; Longerich, Thomas ; Greten, Tim F. ; Pastan, Ira ; Ho, Mitchell</creatorcontrib><description>Background and Aims Treatment of hepatocellular carcinomas using our glypican‐3 (GPC3)‐targeting human nanobody (HN3) immunotoxins causes potent tumor regression by blocking protein synthesis and down‐regulating the Wnt signaling pathway. However, immunogenicity and a short serum half‐life may limit the ability of immunotoxins to transition to the clinic. Approach and Results To address these concerns, we engineered HN3‐based immunotoxins to contain various deimmunized Pseudomonas exotoxin (PE) domains. This included HN3‐T20, which was modified to remove T‐cell epitopes and contains a PE domain II truncation. We compared them to our previously reported B‐cell deimmunized immunotoxin (HN3‐mPE24) and our original HN3‐immunotoxin with a wild‐type PE domain (HN3‐PE38). All of our immunotoxins displayed high affinity to human GPC3, with HN3‐T20 having a KD value of 7.4 nM. HN3‐T20 retained 73% enzymatic activity when compared with the wild‐type immunotoxin in an adenosine diphosphate–ribosylation assay. Interestingly, a real‐time cell growth inhibition assay demonstrated that a single dose of HN3‐T20 at 62.5 ng/mL (1.6 nM) was capable of inhibiting nearly all cell proliferation during the 10‐day experiment. To enhance HN3‐T20’s serum retention, we tested the effect of adding a streptococcal albumin‐binding domain (ABD) and a llama single‐domain antibody fragment specific for mouse and human serum albumin. For the detection of immunotoxin in mouse serum, we developed a highly sensitive enzyme‐linked immunosorbent assay and found that HN3‐ABD‐T20 had a 45‐fold higher serum half‐life than HN3‐T20 (326 minutes vs. 7.3 minutes); consequently, addition of an ABD resulted in HN3‐ABD‐T20–mediated tumor regression at 1 mg/kg. Conclusion These data indicate that ABD‐containing deimmunized HN3‐T20 immunotoxins are high‐potency therapeutics ready to be evaluated in clinical trials for the treatment of liver cancer.</description><identifier>ISSN: 0270-9139</identifier><identifier>EISSN: 1527-3350</identifier><identifier>DOI: 10.1002/hep.30949</identifier><identifier>PMID: 31520528</identifier><language>eng</language><publisher>United States: Wolters Kluwer Health, Inc</publisher><subject>ADP Ribose Transferases - chemistry ; ADP Ribose Transferases - pharmacology ; ADP Ribose Transferases - therapeutic use ; ADP-ribosylation ; Albumin ; Animals ; Bacterial Toxins - chemistry ; Bacterial Toxins - pharmacology ; Bacterial Toxins - therapeutic use ; Carcinoma, Hepatocellular - therapy ; Cell growth ; Cell Line, Tumor ; Cell proliferation ; Clinical trials ; Enzymatic activity ; Epitopes ; Exotoxins ; Exotoxins - chemistry ; Exotoxins - pharmacology ; Exotoxins - therapeutic use ; Glypicans - antagonists &amp; inhibitors ; Heparan sulfate proteoglycans ; Hepatocellular carcinoma ; Hepatology ; Human serum albumin ; Humans ; Immunogenicity ; Immunotoxins ; Immunotoxins - chemistry ; Immunotoxins - pharmacology ; Immunotoxins - therapeutic use ; Liver cancer ; Liver Neoplasms - therapy ; Mice ; Mice, Nude ; Nanobodies ; Protein biosynthesis ; Pseudomonas aeruginosa Exotoxin A ; Signal transduction ; Single-Domain Antibodies - chemistry ; Single-Domain Antibodies - pharmacology ; Single-Domain Antibodies - therapeutic use ; Virulence Factors - chemistry ; Virulence Factors - pharmacology ; Virulence Factors - therapeutic use ; Wnt protein ; Xenograft Model Antitumor Assays ; Xenografts</subject><ispartof>Hepatology (Baltimore, Md.), 2020-05, Vol.71 (5), p.1696-1711</ispartof><rights>2019 by the American Association for the Study of Liver Diseases.</rights><rights>2020 by the American Association for the Study of Liver Diseases.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3889-c74e9ee0f67ed42e234a22e8ec4572227c6e2b39a18722894b3d5c137bafdc883</citedby><cites>FETCH-LOGICAL-c3889-c74e9ee0f67ed42e234a22e8ec4572227c6e2b39a18722894b3d5c137bafdc883</cites><orcidid>0000-0003-3556-0852 ; 0000-0002-9152-5405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhep.30949$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhep.30949$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31520528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fleming, Bryan D.</creatorcontrib><creatorcontrib>Urban, Daniel J.</creatorcontrib><creatorcontrib>Hall, Matthew D.</creatorcontrib><creatorcontrib>Longerich, Thomas</creatorcontrib><creatorcontrib>Greten, Tim F.</creatorcontrib><creatorcontrib>Pastan, Ira</creatorcontrib><creatorcontrib>Ho, Mitchell</creatorcontrib><title>Engineered Anti‐GPC3 Immunotoxin, HN3‐ABD‐T20, Produces Regression in Mouse Liver Cancer Xenografts Through Prolonged Serum Retention</title><title>Hepatology (Baltimore, Md.)</title><addtitle>Hepatology</addtitle><description>Background and Aims Treatment of hepatocellular carcinomas using our glypican‐3 (GPC3)‐targeting human nanobody (HN3) immunotoxins causes potent tumor regression by blocking protein synthesis and down‐regulating the Wnt signaling pathway. However, immunogenicity and a short serum half‐life may limit the ability of immunotoxins to transition to the clinic. Approach and Results To address these concerns, we engineered HN3‐based immunotoxins to contain various deimmunized Pseudomonas exotoxin (PE) domains. This included HN3‐T20, which was modified to remove T‐cell epitopes and contains a PE domain II truncation. We compared them to our previously reported B‐cell deimmunized immunotoxin (HN3‐mPE24) and our original HN3‐immunotoxin with a wild‐type PE domain (HN3‐PE38). All of our immunotoxins displayed high affinity to human GPC3, with HN3‐T20 having a KD value of 7.4 nM. HN3‐T20 retained 73% enzymatic activity when compared with the wild‐type immunotoxin in an adenosine diphosphate–ribosylation assay. Interestingly, a real‐time cell growth inhibition assay demonstrated that a single dose of HN3‐T20 at 62.5 ng/mL (1.6 nM) was capable of inhibiting nearly all cell proliferation during the 10‐day experiment. To enhance HN3‐T20’s serum retention, we tested the effect of adding a streptococcal albumin‐binding domain (ABD) and a llama single‐domain antibody fragment specific for mouse and human serum albumin. For the detection of immunotoxin in mouse serum, we developed a highly sensitive enzyme‐linked immunosorbent assay and found that HN3‐ABD‐T20 had a 45‐fold higher serum half‐life than HN3‐T20 (326 minutes vs. 7.3 minutes); consequently, addition of an ABD resulted in HN3‐ABD‐T20–mediated tumor regression at 1 mg/kg. Conclusion These data indicate that ABD‐containing deimmunized HN3‐T20 immunotoxins are high‐potency therapeutics ready to be evaluated in clinical trials for the treatment of liver cancer.</description><subject>ADP Ribose Transferases - chemistry</subject><subject>ADP Ribose Transferases - pharmacology</subject><subject>ADP Ribose Transferases - therapeutic use</subject><subject>ADP-ribosylation</subject><subject>Albumin</subject><subject>Animals</subject><subject>Bacterial Toxins - chemistry</subject><subject>Bacterial Toxins - pharmacology</subject><subject>Bacterial Toxins - therapeutic use</subject><subject>Carcinoma, Hepatocellular - therapy</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell proliferation</subject><subject>Clinical trials</subject><subject>Enzymatic activity</subject><subject>Epitopes</subject><subject>Exotoxins</subject><subject>Exotoxins - chemistry</subject><subject>Exotoxins - pharmacology</subject><subject>Exotoxins - therapeutic use</subject><subject>Glypicans - antagonists &amp; inhibitors</subject><subject>Heparan sulfate proteoglycans</subject><subject>Hepatocellular carcinoma</subject><subject>Hepatology</subject><subject>Human serum albumin</subject><subject>Humans</subject><subject>Immunogenicity</subject><subject>Immunotoxins</subject><subject>Immunotoxins - chemistry</subject><subject>Immunotoxins - pharmacology</subject><subject>Immunotoxins - therapeutic use</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - therapy</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Nanobodies</subject><subject>Protein biosynthesis</subject><subject>Pseudomonas aeruginosa Exotoxin A</subject><subject>Signal transduction</subject><subject>Single-Domain Antibodies - chemistry</subject><subject>Single-Domain Antibodies - pharmacology</subject><subject>Single-Domain Antibodies - therapeutic use</subject><subject>Virulence Factors - chemistry</subject><subject>Virulence Factors - pharmacology</subject><subject>Virulence Factors - therapeutic use</subject><subject>Wnt protein</subject><subject>Xenograft Model Antitumor Assays</subject><subject>Xenografts</subject><issn>0270-9139</issn><issn>1527-3350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEFP2zAUxy3ERDvgwBdAljhNItR5Thr72GWFVuq2Cjpptyh1XtKgxu7sZBs37lz4jPskcxfgtouf_PR7v7_0J-QsZFchYzDa4O6KMxnJAzIMY0gCzmN2SIYMEhbIkMsBee_cPWOeAXFEBtxTLAYxJE9TXdUa0WJBJ7qt_zw-3yxTTudN02nTmt-1vqSzL9zvJx8_-XcF7JIurSk6hY7eYmXRudpoWmv62XQO6aL-iZamuVZ-fEdtKpuXraOrjTVdtdkfb42ufOAd2q7xjhZ9stEn5F2Zbx2evsxj8u16ukpnweLrzTydLALFhZCBSiKUiKwcJ1hEgMCjHAAFqihOACBRY4Q1l3ko_FfIaM2LWIU8WedloYTgx-Si9-6s-dGha7N701ntIzPgMh4DiyDy1IeeUtY4Z7HMdrZucvuQhSzb15752rN_tXv2_MXYrRss3sjXnj0w6oFf9RYf_m_KZtNlr_wLOXyOkA</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Fleming, Bryan D.</creator><creator>Urban, Daniel J.</creator><creator>Hall, Matthew D.</creator><creator>Longerich, Thomas</creator><creator>Greten, Tim F.</creator><creator>Pastan, Ira</creator><creator>Ho, Mitchell</creator><general>Wolters Kluwer Health, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0003-3556-0852</orcidid><orcidid>https://orcid.org/0000-0002-9152-5405</orcidid></search><sort><creationdate>202005</creationdate><title>Engineered Anti‐GPC3 Immunotoxin, HN3‐ABD‐T20, Produces Regression in Mouse Liver Cancer Xenografts Through Prolonged Serum Retention</title><author>Fleming, Bryan D. ; Urban, Daniel J. ; Hall, Matthew D. ; Longerich, Thomas ; Greten, Tim F. ; Pastan, Ira ; Ho, Mitchell</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3889-c74e9ee0f67ed42e234a22e8ec4572227c6e2b39a18722894b3d5c137bafdc883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ADP Ribose Transferases - chemistry</topic><topic>ADP Ribose Transferases - pharmacology</topic><topic>ADP Ribose Transferases - therapeutic use</topic><topic>ADP-ribosylation</topic><topic>Albumin</topic><topic>Animals</topic><topic>Bacterial Toxins - chemistry</topic><topic>Bacterial Toxins - pharmacology</topic><topic>Bacterial Toxins - therapeutic use</topic><topic>Carcinoma, Hepatocellular - therapy</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell proliferation</topic><topic>Clinical trials</topic><topic>Enzymatic activity</topic><topic>Epitopes</topic><topic>Exotoxins</topic><topic>Exotoxins - chemistry</topic><topic>Exotoxins - pharmacology</topic><topic>Exotoxins - therapeutic use</topic><topic>Glypicans - antagonists &amp; inhibitors</topic><topic>Heparan sulfate proteoglycans</topic><topic>Hepatocellular carcinoma</topic><topic>Hepatology</topic><topic>Human serum albumin</topic><topic>Humans</topic><topic>Immunogenicity</topic><topic>Immunotoxins</topic><topic>Immunotoxins - chemistry</topic><topic>Immunotoxins - pharmacology</topic><topic>Immunotoxins - therapeutic use</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - therapy</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Nanobodies</topic><topic>Protein biosynthesis</topic><topic>Pseudomonas aeruginosa Exotoxin A</topic><topic>Signal transduction</topic><topic>Single-Domain Antibodies - chemistry</topic><topic>Single-Domain Antibodies - pharmacology</topic><topic>Single-Domain Antibodies - therapeutic use</topic><topic>Virulence Factors - chemistry</topic><topic>Virulence Factors - pharmacology</topic><topic>Virulence Factors - therapeutic use</topic><topic>Wnt protein</topic><topic>Xenograft Model Antitumor Assays</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fleming, Bryan D.</creatorcontrib><creatorcontrib>Urban, Daniel J.</creatorcontrib><creatorcontrib>Hall, Matthew D.</creatorcontrib><creatorcontrib>Longerich, Thomas</creatorcontrib><creatorcontrib>Greten, Tim F.</creatorcontrib><creatorcontrib>Pastan, Ira</creatorcontrib><creatorcontrib>Ho, Mitchell</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Hepatology (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fleming, Bryan D.</au><au>Urban, Daniel J.</au><au>Hall, Matthew D.</au><au>Longerich, Thomas</au><au>Greten, Tim F.</au><au>Pastan, Ira</au><au>Ho, Mitchell</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered Anti‐GPC3 Immunotoxin, HN3‐ABD‐T20, Produces Regression in Mouse Liver Cancer Xenografts Through Prolonged Serum Retention</atitle><jtitle>Hepatology (Baltimore, Md.)</jtitle><addtitle>Hepatology</addtitle><date>2020-05</date><risdate>2020</risdate><volume>71</volume><issue>5</issue><spage>1696</spage><epage>1711</epage><pages>1696-1711</pages><issn>0270-9139</issn><eissn>1527-3350</eissn><abstract>Background and Aims Treatment of hepatocellular carcinomas using our glypican‐3 (GPC3)‐targeting human nanobody (HN3) immunotoxins causes potent tumor regression by blocking protein synthesis and down‐regulating the Wnt signaling pathway. However, immunogenicity and a short serum half‐life may limit the ability of immunotoxins to transition to the clinic. Approach and Results To address these concerns, we engineered HN3‐based immunotoxins to contain various deimmunized Pseudomonas exotoxin (PE) domains. This included HN3‐T20, which was modified to remove T‐cell epitopes and contains a PE domain II truncation. We compared them to our previously reported B‐cell deimmunized immunotoxin (HN3‐mPE24) and our original HN3‐immunotoxin with a wild‐type PE domain (HN3‐PE38). All of our immunotoxins displayed high affinity to human GPC3, with HN3‐T20 having a KD value of 7.4 nM. HN3‐T20 retained 73% enzymatic activity when compared with the wild‐type immunotoxin in an adenosine diphosphate–ribosylation assay. Interestingly, a real‐time cell growth inhibition assay demonstrated that a single dose of HN3‐T20 at 62.5 ng/mL (1.6 nM) was capable of inhibiting nearly all cell proliferation during the 10‐day experiment. To enhance HN3‐T20’s serum retention, we tested the effect of adding a streptococcal albumin‐binding domain (ABD) and a llama single‐domain antibody fragment specific for mouse and human serum albumin. For the detection of immunotoxin in mouse serum, we developed a highly sensitive enzyme‐linked immunosorbent assay and found that HN3‐ABD‐T20 had a 45‐fold higher serum half‐life than HN3‐T20 (326 minutes vs. 7.3 minutes); consequently, addition of an ABD resulted in HN3‐ABD‐T20–mediated tumor regression at 1 mg/kg. Conclusion These data indicate that ABD‐containing deimmunized HN3‐T20 immunotoxins are high‐potency therapeutics ready to be evaluated in clinical trials for the treatment of liver cancer.</abstract><cop>United States</cop><pub>Wolters Kluwer Health, Inc</pub><pmid>31520528</pmid><doi>10.1002/hep.30949</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3556-0852</orcidid><orcidid>https://orcid.org/0000-0002-9152-5405</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-9139
ispartof Hepatology (Baltimore, Md.), 2020-05, Vol.71 (5), p.1696-1711
issn 0270-9139
1527-3350
language eng
recordid cdi_crossref_primary_10_1002_hep_30949
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals
subjects ADP Ribose Transferases - chemistry
ADP Ribose Transferases - pharmacology
ADP Ribose Transferases - therapeutic use
ADP-ribosylation
Albumin
Animals
Bacterial Toxins - chemistry
Bacterial Toxins - pharmacology
Bacterial Toxins - therapeutic use
Carcinoma, Hepatocellular - therapy
Cell growth
Cell Line, Tumor
Cell proliferation
Clinical trials
Enzymatic activity
Epitopes
Exotoxins
Exotoxins - chemistry
Exotoxins - pharmacology
Exotoxins - therapeutic use
Glypicans - antagonists & inhibitors
Heparan sulfate proteoglycans
Hepatocellular carcinoma
Hepatology
Human serum albumin
Humans
Immunogenicity
Immunotoxins
Immunotoxins - chemistry
Immunotoxins - pharmacology
Immunotoxins - therapeutic use
Liver cancer
Liver Neoplasms - therapy
Mice
Mice, Nude
Nanobodies
Protein biosynthesis
Pseudomonas aeruginosa Exotoxin A
Signal transduction
Single-Domain Antibodies - chemistry
Single-Domain Antibodies - pharmacology
Single-Domain Antibodies - therapeutic use
Virulence Factors - chemistry
Virulence Factors - pharmacology
Virulence Factors - therapeutic use
Wnt protein
Xenograft Model Antitumor Assays
Xenografts
title Engineered Anti‐GPC3 Immunotoxin, HN3‐ABD‐T20, Produces Regression in Mouse Liver Cancer Xenografts Through Prolonged Serum Retention
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A03%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20Anti%E2%80%90GPC3%20Immunotoxin,%20HN3%E2%80%90ABD%E2%80%90T20,%20Produces%20Regression%20in%20Mouse%20Liver%20Cancer%20Xenografts%20Through%20Prolonged%20Serum%20Retention&rft.jtitle=Hepatology%20(Baltimore,%20Md.)&rft.au=Fleming,%20Bryan%20D.&rft.date=2020-05&rft.volume=71&rft.issue=5&rft.spage=1696&rft.epage=1711&rft.pages=1696-1711&rft.issn=0270-9139&rft.eissn=1527-3350&rft_id=info:doi/10.1002/hep.30949&rft_dat=%3Cproquest_cross%3E2395620424%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395620424&rft_id=info:pmid/31520528&rfr_iscdi=true