Engineered Anti‐GPC3 Immunotoxin, HN3‐ABD‐T20, Produces Regression in Mouse Liver Cancer Xenografts Through Prolonged Serum Retention
Background and Aims Treatment of hepatocellular carcinomas using our glypican‐3 (GPC3)‐targeting human nanobody (HN3) immunotoxins causes potent tumor regression by blocking protein synthesis and down‐regulating the Wnt signaling pathway. However, immunogenicity and a short serum half‐life may limit...
Gespeichert in:
Veröffentlicht in: | Hepatology (Baltimore, Md.) Md.), 2020-05, Vol.71 (5), p.1696-1711 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1711 |
---|---|
container_issue | 5 |
container_start_page | 1696 |
container_title | Hepatology (Baltimore, Md.) |
container_volume | 71 |
creator | Fleming, Bryan D. Urban, Daniel J. Hall, Matthew D. Longerich, Thomas Greten, Tim F. Pastan, Ira Ho, Mitchell |
description | Background and Aims
Treatment of hepatocellular carcinomas using our glypican‐3 (GPC3)‐targeting human nanobody (HN3) immunotoxins causes potent tumor regression by blocking protein synthesis and down‐regulating the Wnt signaling pathway. However, immunogenicity and a short serum half‐life may limit the ability of immunotoxins to transition to the clinic.
Approach and Results
To address these concerns, we engineered HN3‐based immunotoxins to contain various deimmunized Pseudomonas exotoxin (PE) domains. This included HN3‐T20, which was modified to remove T‐cell epitopes and contains a PE domain II truncation. We compared them to our previously reported B‐cell deimmunized immunotoxin (HN3‐mPE24) and our original HN3‐immunotoxin with a wild‐type PE domain (HN3‐PE38). All of our immunotoxins displayed high affinity to human GPC3, with HN3‐T20 having a KD value of 7.4 nM. HN3‐T20 retained 73% enzymatic activity when compared with the wild‐type immunotoxin in an adenosine diphosphate–ribosylation assay. Interestingly, a real‐time cell growth inhibition assay demonstrated that a single dose of HN3‐T20 at 62.5 ng/mL (1.6 nM) was capable of inhibiting nearly all cell proliferation during the 10‐day experiment. To enhance HN3‐T20’s serum retention, we tested the effect of adding a streptococcal albumin‐binding domain (ABD) and a llama single‐domain antibody fragment specific for mouse and human serum albumin. For the detection of immunotoxin in mouse serum, we developed a highly sensitive enzyme‐linked immunosorbent assay and found that HN3‐ABD‐T20 had a 45‐fold higher serum half‐life than HN3‐T20 (326 minutes vs. 7.3 minutes); consequently, addition of an ABD resulted in HN3‐ABD‐T20–mediated tumor regression at 1 mg/kg.
Conclusion
These data indicate that ABD‐containing deimmunized HN3‐T20 immunotoxins are high‐potency therapeutics ready to be evaluated in clinical trials for the treatment of liver cancer. |
doi_str_mv | 10.1002/hep.30949 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_hep_30949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395620424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3889-c74e9ee0f67ed42e234a22e8ec4572227c6e2b39a18722894b3d5c137bafdc883</originalsourceid><addsrcrecordid>eNp1kEFP2zAUxy3ERDvgwBdAljhNItR5Thr72GWFVuq2Cjpptyh1XtKgxu7sZBs37lz4jPskcxfgtouf_PR7v7_0J-QsZFchYzDa4O6KMxnJAzIMY0gCzmN2SIYMEhbIkMsBee_cPWOeAXFEBtxTLAYxJE9TXdUa0WJBJ7qt_zw-3yxTTudN02nTmt-1vqSzL9zvJx8_-XcF7JIurSk6hY7eYmXRudpoWmv62XQO6aL-iZamuVZ-fEdtKpuXraOrjTVdtdkfb42ufOAd2q7xjhZ9stEn5F2Zbx2evsxj8u16ukpnweLrzTydLALFhZCBSiKUiKwcJ1hEgMCjHAAFqihOACBRY4Q1l3ko_FfIaM2LWIU8WedloYTgx-Si9-6s-dGha7N701ntIzPgMh4DiyDy1IeeUtY4Z7HMdrZucvuQhSzb15752rN_tXv2_MXYrRss3sjXnj0w6oFf9RYf_m_KZtNlr_wLOXyOkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395620424</pqid></control><display><type>article</type><title>Engineered Anti‐GPC3 Immunotoxin, HN3‐ABD‐T20, Produces Regression in Mouse Liver Cancer Xenografts Through Prolonged Serum Retention</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Fleming, Bryan D. ; Urban, Daniel J. ; Hall, Matthew D. ; Longerich, Thomas ; Greten, Tim F. ; Pastan, Ira ; Ho, Mitchell</creator><creatorcontrib>Fleming, Bryan D. ; Urban, Daniel J. ; Hall, Matthew D. ; Longerich, Thomas ; Greten, Tim F. ; Pastan, Ira ; Ho, Mitchell</creatorcontrib><description>Background and Aims
Treatment of hepatocellular carcinomas using our glypican‐3 (GPC3)‐targeting human nanobody (HN3) immunotoxins causes potent tumor regression by blocking protein synthesis and down‐regulating the Wnt signaling pathway. However, immunogenicity and a short serum half‐life may limit the ability of immunotoxins to transition to the clinic.
Approach and Results
To address these concerns, we engineered HN3‐based immunotoxins to contain various deimmunized Pseudomonas exotoxin (PE) domains. This included HN3‐T20, which was modified to remove T‐cell epitopes and contains a PE domain II truncation. We compared them to our previously reported B‐cell deimmunized immunotoxin (HN3‐mPE24) and our original HN3‐immunotoxin with a wild‐type PE domain (HN3‐PE38). All of our immunotoxins displayed high affinity to human GPC3, with HN3‐T20 having a KD value of 7.4 nM. HN3‐T20 retained 73% enzymatic activity when compared with the wild‐type immunotoxin in an adenosine diphosphate–ribosylation assay. Interestingly, a real‐time cell growth inhibition assay demonstrated that a single dose of HN3‐T20 at 62.5 ng/mL (1.6 nM) was capable of inhibiting nearly all cell proliferation during the 10‐day experiment. To enhance HN3‐T20’s serum retention, we tested the effect of adding a streptococcal albumin‐binding domain (ABD) and a llama single‐domain antibody fragment specific for mouse and human serum albumin. For the detection of immunotoxin in mouse serum, we developed a highly sensitive enzyme‐linked immunosorbent assay and found that HN3‐ABD‐T20 had a 45‐fold higher serum half‐life than HN3‐T20 (326 minutes vs. 7.3 minutes); consequently, addition of an ABD resulted in HN3‐ABD‐T20–mediated tumor regression at 1 mg/kg.
Conclusion
These data indicate that ABD‐containing deimmunized HN3‐T20 immunotoxins are high‐potency therapeutics ready to be evaluated in clinical trials for the treatment of liver cancer.</description><identifier>ISSN: 0270-9139</identifier><identifier>EISSN: 1527-3350</identifier><identifier>DOI: 10.1002/hep.30949</identifier><identifier>PMID: 31520528</identifier><language>eng</language><publisher>United States: Wolters Kluwer Health, Inc</publisher><subject>ADP Ribose Transferases - chemistry ; ADP Ribose Transferases - pharmacology ; ADP Ribose Transferases - therapeutic use ; ADP-ribosylation ; Albumin ; Animals ; Bacterial Toxins - chemistry ; Bacterial Toxins - pharmacology ; Bacterial Toxins - therapeutic use ; Carcinoma, Hepatocellular - therapy ; Cell growth ; Cell Line, Tumor ; Cell proliferation ; Clinical trials ; Enzymatic activity ; Epitopes ; Exotoxins ; Exotoxins - chemistry ; Exotoxins - pharmacology ; Exotoxins - therapeutic use ; Glypicans - antagonists & inhibitors ; Heparan sulfate proteoglycans ; Hepatocellular carcinoma ; Hepatology ; Human serum albumin ; Humans ; Immunogenicity ; Immunotoxins ; Immunotoxins - chemistry ; Immunotoxins - pharmacology ; Immunotoxins - therapeutic use ; Liver cancer ; Liver Neoplasms - therapy ; Mice ; Mice, Nude ; Nanobodies ; Protein biosynthesis ; Pseudomonas aeruginosa Exotoxin A ; Signal transduction ; Single-Domain Antibodies - chemistry ; Single-Domain Antibodies - pharmacology ; Single-Domain Antibodies - therapeutic use ; Virulence Factors - chemistry ; Virulence Factors - pharmacology ; Virulence Factors - therapeutic use ; Wnt protein ; Xenograft Model Antitumor Assays ; Xenografts</subject><ispartof>Hepatology (Baltimore, Md.), 2020-05, Vol.71 (5), p.1696-1711</ispartof><rights>2019 by the American Association for the Study of Liver Diseases.</rights><rights>2020 by the American Association for the Study of Liver Diseases.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3889-c74e9ee0f67ed42e234a22e8ec4572227c6e2b39a18722894b3d5c137bafdc883</citedby><cites>FETCH-LOGICAL-c3889-c74e9ee0f67ed42e234a22e8ec4572227c6e2b39a18722894b3d5c137bafdc883</cites><orcidid>0000-0003-3556-0852 ; 0000-0002-9152-5405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhep.30949$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhep.30949$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31520528$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fleming, Bryan D.</creatorcontrib><creatorcontrib>Urban, Daniel J.</creatorcontrib><creatorcontrib>Hall, Matthew D.</creatorcontrib><creatorcontrib>Longerich, Thomas</creatorcontrib><creatorcontrib>Greten, Tim F.</creatorcontrib><creatorcontrib>Pastan, Ira</creatorcontrib><creatorcontrib>Ho, Mitchell</creatorcontrib><title>Engineered Anti‐GPC3 Immunotoxin, HN3‐ABD‐T20, Produces Regression in Mouse Liver Cancer Xenografts Through Prolonged Serum Retention</title><title>Hepatology (Baltimore, Md.)</title><addtitle>Hepatology</addtitle><description>Background and Aims
Treatment of hepatocellular carcinomas using our glypican‐3 (GPC3)‐targeting human nanobody (HN3) immunotoxins causes potent tumor regression by blocking protein synthesis and down‐regulating the Wnt signaling pathway. However, immunogenicity and a short serum half‐life may limit the ability of immunotoxins to transition to the clinic.
Approach and Results
To address these concerns, we engineered HN3‐based immunotoxins to contain various deimmunized Pseudomonas exotoxin (PE) domains. This included HN3‐T20, which was modified to remove T‐cell epitopes and contains a PE domain II truncation. We compared them to our previously reported B‐cell deimmunized immunotoxin (HN3‐mPE24) and our original HN3‐immunotoxin with a wild‐type PE domain (HN3‐PE38). All of our immunotoxins displayed high affinity to human GPC3, with HN3‐T20 having a KD value of 7.4 nM. HN3‐T20 retained 73% enzymatic activity when compared with the wild‐type immunotoxin in an adenosine diphosphate–ribosylation assay. Interestingly, a real‐time cell growth inhibition assay demonstrated that a single dose of HN3‐T20 at 62.5 ng/mL (1.6 nM) was capable of inhibiting nearly all cell proliferation during the 10‐day experiment. To enhance HN3‐T20’s serum retention, we tested the effect of adding a streptococcal albumin‐binding domain (ABD) and a llama single‐domain antibody fragment specific for mouse and human serum albumin. For the detection of immunotoxin in mouse serum, we developed a highly sensitive enzyme‐linked immunosorbent assay and found that HN3‐ABD‐T20 had a 45‐fold higher serum half‐life than HN3‐T20 (326 minutes vs. 7.3 minutes); consequently, addition of an ABD resulted in HN3‐ABD‐T20–mediated tumor regression at 1 mg/kg.
Conclusion
These data indicate that ABD‐containing deimmunized HN3‐T20 immunotoxins are high‐potency therapeutics ready to be evaluated in clinical trials for the treatment of liver cancer.</description><subject>ADP Ribose Transferases - chemistry</subject><subject>ADP Ribose Transferases - pharmacology</subject><subject>ADP Ribose Transferases - therapeutic use</subject><subject>ADP-ribosylation</subject><subject>Albumin</subject><subject>Animals</subject><subject>Bacterial Toxins - chemistry</subject><subject>Bacterial Toxins - pharmacology</subject><subject>Bacterial Toxins - therapeutic use</subject><subject>Carcinoma, Hepatocellular - therapy</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell proliferation</subject><subject>Clinical trials</subject><subject>Enzymatic activity</subject><subject>Epitopes</subject><subject>Exotoxins</subject><subject>Exotoxins - chemistry</subject><subject>Exotoxins - pharmacology</subject><subject>Exotoxins - therapeutic use</subject><subject>Glypicans - antagonists & inhibitors</subject><subject>Heparan sulfate proteoglycans</subject><subject>Hepatocellular carcinoma</subject><subject>Hepatology</subject><subject>Human serum albumin</subject><subject>Humans</subject><subject>Immunogenicity</subject><subject>Immunotoxins</subject><subject>Immunotoxins - chemistry</subject><subject>Immunotoxins - pharmacology</subject><subject>Immunotoxins - therapeutic use</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - therapy</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Nanobodies</subject><subject>Protein biosynthesis</subject><subject>Pseudomonas aeruginosa Exotoxin A</subject><subject>Signal transduction</subject><subject>Single-Domain Antibodies - chemistry</subject><subject>Single-Domain Antibodies - pharmacology</subject><subject>Single-Domain Antibodies - therapeutic use</subject><subject>Virulence Factors - chemistry</subject><subject>Virulence Factors - pharmacology</subject><subject>Virulence Factors - therapeutic use</subject><subject>Wnt protein</subject><subject>Xenograft Model Antitumor Assays</subject><subject>Xenografts</subject><issn>0270-9139</issn><issn>1527-3350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEFP2zAUxy3ERDvgwBdAljhNItR5Thr72GWFVuq2Cjpptyh1XtKgxu7sZBs37lz4jPskcxfgtouf_PR7v7_0J-QsZFchYzDa4O6KMxnJAzIMY0gCzmN2SIYMEhbIkMsBee_cPWOeAXFEBtxTLAYxJE9TXdUa0WJBJ7qt_zw-3yxTTudN02nTmt-1vqSzL9zvJx8_-XcF7JIurSk6hY7eYmXRudpoWmv62XQO6aL-iZamuVZ-fEdtKpuXraOrjTVdtdkfb42ufOAd2q7xjhZ9stEn5F2Zbx2evsxj8u16ukpnweLrzTydLALFhZCBSiKUiKwcJ1hEgMCjHAAFqihOACBRY4Q1l3ko_FfIaM2LWIU8WedloYTgx-Si9-6s-dGha7N701ntIzPgMh4DiyDy1IeeUtY4Z7HMdrZucvuQhSzb15752rN_tXv2_MXYrRss3sjXnj0w6oFf9RYf_m_KZtNlr_wLOXyOkA</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Fleming, Bryan D.</creator><creator>Urban, Daniel J.</creator><creator>Hall, Matthew D.</creator><creator>Longerich, Thomas</creator><creator>Greten, Tim F.</creator><creator>Pastan, Ira</creator><creator>Ho, Mitchell</creator><general>Wolters Kluwer Health, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0003-3556-0852</orcidid><orcidid>https://orcid.org/0000-0002-9152-5405</orcidid></search><sort><creationdate>202005</creationdate><title>Engineered Anti‐GPC3 Immunotoxin, HN3‐ABD‐T20, Produces Regression in Mouse Liver Cancer Xenografts Through Prolonged Serum Retention</title><author>Fleming, Bryan D. ; Urban, Daniel J. ; Hall, Matthew D. ; Longerich, Thomas ; Greten, Tim F. ; Pastan, Ira ; Ho, Mitchell</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3889-c74e9ee0f67ed42e234a22e8ec4572227c6e2b39a18722894b3d5c137bafdc883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ADP Ribose Transferases - chemistry</topic><topic>ADP Ribose Transferases - pharmacology</topic><topic>ADP Ribose Transferases - therapeutic use</topic><topic>ADP-ribosylation</topic><topic>Albumin</topic><topic>Animals</topic><topic>Bacterial Toxins - chemistry</topic><topic>Bacterial Toxins - pharmacology</topic><topic>Bacterial Toxins - therapeutic use</topic><topic>Carcinoma, Hepatocellular - therapy</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell proliferation</topic><topic>Clinical trials</topic><topic>Enzymatic activity</topic><topic>Epitopes</topic><topic>Exotoxins</topic><topic>Exotoxins - chemistry</topic><topic>Exotoxins - pharmacology</topic><topic>Exotoxins - therapeutic use</topic><topic>Glypicans - antagonists & inhibitors</topic><topic>Heparan sulfate proteoglycans</topic><topic>Hepatocellular carcinoma</topic><topic>Hepatology</topic><topic>Human serum albumin</topic><topic>Humans</topic><topic>Immunogenicity</topic><topic>Immunotoxins</topic><topic>Immunotoxins - chemistry</topic><topic>Immunotoxins - pharmacology</topic><topic>Immunotoxins - therapeutic use</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - therapy</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Nanobodies</topic><topic>Protein biosynthesis</topic><topic>Pseudomonas aeruginosa Exotoxin A</topic><topic>Signal transduction</topic><topic>Single-Domain Antibodies - chemistry</topic><topic>Single-Domain Antibodies - pharmacology</topic><topic>Single-Domain Antibodies - therapeutic use</topic><topic>Virulence Factors - chemistry</topic><topic>Virulence Factors - pharmacology</topic><topic>Virulence Factors - therapeutic use</topic><topic>Wnt protein</topic><topic>Xenograft Model Antitumor Assays</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fleming, Bryan D.</creatorcontrib><creatorcontrib>Urban, Daniel J.</creatorcontrib><creatorcontrib>Hall, Matthew D.</creatorcontrib><creatorcontrib>Longerich, Thomas</creatorcontrib><creatorcontrib>Greten, Tim F.</creatorcontrib><creatorcontrib>Pastan, Ira</creatorcontrib><creatorcontrib>Ho, Mitchell</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Hepatology (Baltimore, Md.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fleming, Bryan D.</au><au>Urban, Daniel J.</au><au>Hall, Matthew D.</au><au>Longerich, Thomas</au><au>Greten, Tim F.</au><au>Pastan, Ira</au><au>Ho, Mitchell</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineered Anti‐GPC3 Immunotoxin, HN3‐ABD‐T20, Produces Regression in Mouse Liver Cancer Xenografts Through Prolonged Serum Retention</atitle><jtitle>Hepatology (Baltimore, Md.)</jtitle><addtitle>Hepatology</addtitle><date>2020-05</date><risdate>2020</risdate><volume>71</volume><issue>5</issue><spage>1696</spage><epage>1711</epage><pages>1696-1711</pages><issn>0270-9139</issn><eissn>1527-3350</eissn><abstract>Background and Aims
Treatment of hepatocellular carcinomas using our glypican‐3 (GPC3)‐targeting human nanobody (HN3) immunotoxins causes potent tumor regression by blocking protein synthesis and down‐regulating the Wnt signaling pathway. However, immunogenicity and a short serum half‐life may limit the ability of immunotoxins to transition to the clinic.
Approach and Results
To address these concerns, we engineered HN3‐based immunotoxins to contain various deimmunized Pseudomonas exotoxin (PE) domains. This included HN3‐T20, which was modified to remove T‐cell epitopes and contains a PE domain II truncation. We compared them to our previously reported B‐cell deimmunized immunotoxin (HN3‐mPE24) and our original HN3‐immunotoxin with a wild‐type PE domain (HN3‐PE38). All of our immunotoxins displayed high affinity to human GPC3, with HN3‐T20 having a KD value of 7.4 nM. HN3‐T20 retained 73% enzymatic activity when compared with the wild‐type immunotoxin in an adenosine diphosphate–ribosylation assay. Interestingly, a real‐time cell growth inhibition assay demonstrated that a single dose of HN3‐T20 at 62.5 ng/mL (1.6 nM) was capable of inhibiting nearly all cell proliferation during the 10‐day experiment. To enhance HN3‐T20’s serum retention, we tested the effect of adding a streptococcal albumin‐binding domain (ABD) and a llama single‐domain antibody fragment specific for mouse and human serum albumin. For the detection of immunotoxin in mouse serum, we developed a highly sensitive enzyme‐linked immunosorbent assay and found that HN3‐ABD‐T20 had a 45‐fold higher serum half‐life than HN3‐T20 (326 minutes vs. 7.3 minutes); consequently, addition of an ABD resulted in HN3‐ABD‐T20–mediated tumor regression at 1 mg/kg.
Conclusion
These data indicate that ABD‐containing deimmunized HN3‐T20 immunotoxins are high‐potency therapeutics ready to be evaluated in clinical trials for the treatment of liver cancer.</abstract><cop>United States</cop><pub>Wolters Kluwer Health, Inc</pub><pmid>31520528</pmid><doi>10.1002/hep.30949</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3556-0852</orcidid><orcidid>https://orcid.org/0000-0002-9152-5405</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-9139 |
ispartof | Hepatology (Baltimore, Md.), 2020-05, Vol.71 (5), p.1696-1711 |
issn | 0270-9139 1527-3350 |
language | eng |
recordid | cdi_crossref_primary_10_1002_hep_30949 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals |
subjects | ADP Ribose Transferases - chemistry ADP Ribose Transferases - pharmacology ADP Ribose Transferases - therapeutic use ADP-ribosylation Albumin Animals Bacterial Toxins - chemistry Bacterial Toxins - pharmacology Bacterial Toxins - therapeutic use Carcinoma, Hepatocellular - therapy Cell growth Cell Line, Tumor Cell proliferation Clinical trials Enzymatic activity Epitopes Exotoxins Exotoxins - chemistry Exotoxins - pharmacology Exotoxins - therapeutic use Glypicans - antagonists & inhibitors Heparan sulfate proteoglycans Hepatocellular carcinoma Hepatology Human serum albumin Humans Immunogenicity Immunotoxins Immunotoxins - chemistry Immunotoxins - pharmacology Immunotoxins - therapeutic use Liver cancer Liver Neoplasms - therapy Mice Mice, Nude Nanobodies Protein biosynthesis Pseudomonas aeruginosa Exotoxin A Signal transduction Single-Domain Antibodies - chemistry Single-Domain Antibodies - pharmacology Single-Domain Antibodies - therapeutic use Virulence Factors - chemistry Virulence Factors - pharmacology Virulence Factors - therapeutic use Wnt protein Xenograft Model Antitumor Assays Xenografts |
title | Engineered Anti‐GPC3 Immunotoxin, HN3‐ABD‐T20, Produces Regression in Mouse Liver Cancer Xenografts Through Prolonged Serum Retention |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A03%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineered%20Anti%E2%80%90GPC3%20Immunotoxin,%20HN3%E2%80%90ABD%E2%80%90T20,%20Produces%20Regression%20in%20Mouse%20Liver%20Cancer%20Xenografts%20Through%20Prolonged%20Serum%20Retention&rft.jtitle=Hepatology%20(Baltimore,%20Md.)&rft.au=Fleming,%20Bryan%20D.&rft.date=2020-05&rft.volume=71&rft.issue=5&rft.spage=1696&rft.epage=1711&rft.pages=1696-1711&rft.issn=0270-9139&rft.eissn=1527-3350&rft_id=info:doi/10.1002/hep.30949&rft_dat=%3Cproquest_cross%3E2395620424%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395620424&rft_id=info:pmid/31520528&rfr_iscdi=true |