Acid magmatism and related metallogenesis in the Erzgebirge
In the Erzgebirge two post‐collisional Hercynian granitoid complexes are developed: an older one, monzogranitic, moderately specialized, Sri = 0·7064–68, εTNd = ‐1·8 to ‐6·2, 1g fO2 < −13 ± 1, 1g fHF/fH2O = ‐3·9 ± 0·2, S‐type, 340–325 Ma in age, and a younger one, monzo‐ to albitegranitic, highly...
Gespeichert in:
Veröffentlicht in: | Geological journal (Chichester, England) England), 1990-07, Vol.25 (3-4), p.443-454 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 454 |
---|---|
container_issue | 3-4 |
container_start_page | 443 |
container_title | Geological journal (Chichester, England) |
container_volume | 25 |
creator | Tischendorf, G. Förster, H.-J. |
description | In the Erzgebirge two post‐collisional Hercynian granitoid complexes are developed: an older one, monzogranitic, moderately specialized, Sri = 0·7064–68, εTNd = ‐1·8 to ‐6·2, 1g fO2 < −13 ± 1, 1g fHF/fH2O = ‐3·9 ± 0·2, S‐type, 340–325 Ma in age, and a younger one, monzo‐ to albitegranitic, highly specialized in Li, Rb, Cs, Sn, and W, Sri disturbed by strong autometasomatic influences, εTNd = −3·8 to −6·0, 1g fO2 < −17 ± 1, 1g fHF/fH2O = ‐3 ± 0·3, I‐type, 310–295 Ma. Postplutonic volcanics (rhyolite, rhyodacite, latite, kersantite–minette) in each case complete the magmatic sequences.
Muscovite–wolframite–molybdenite–pyrite–quartz association is locally related to the older complex, but numerous centres of cassiterite–wolframite–zinnwaldite (or muscovite) deposits are related to the younger one. Both mineralizations are of orthomagmatic origin and underwent strong physicochemical control. Thus, the granites genetically related to the tin‐free older association are conditioned by medium fO2 but low fHF/fH2O, the tin‐bearing younger association, in contrast, is controlled by low fO2 coupled with high fHF/fH2O.
Vertical compositional zonation in magma chambers caused enrichment of compatible elements such as Zn, Pb, Mg, Ca, Ba, Sr, in deeper parts of the chamber and their transition into residual solutions which then may form base metal mineralization as cross‐cutting veins. Mineralization events last up to the Triassic. Probably elements in the later stages were derived either from deep‐originated residual solutions or, increasingly, by leaching of specialized magmatites. |
doi_str_mv | 10.1002/gj.3350250326 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_gj_3350250326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GJ3350250326</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3746-cac2d570a04f526a2d99abd30ff292fccd4b2a1dfaf566aa981d1562d595b8553</originalsourceid><addsrcrecordid>eNp9jzFPwzAQhS0EEqUwsmdhTDnbcVKLqURtAVUwAGK0LrEdXJK0siNB-fUEWlGxMN3p9L337hFyTmFEAdhltRxxLoAJ4Cw9IAMKUsYUeHJIBgAZ63cBx-QkhCUApZDQAbmalE5HDVYNdi40EbY68qbGzvRX02FdryrTmuBC5NqoezXR1H9WpnC-MqfkyGIdzNluDsnzbPqU38SLh_ltPlnEyLMkjUssmRYZICRWsBSZlhILzcFaJpktS50UDKm2aEWaIsox1VSkvUaKYiwEH5J461v6VQjeWLX2rkG_URTUd3NVLdW-ec9fbPk1hhJr67EtXdiL-gAhf7hsy7272mz-N1Xzuz8Ju49c6MzHrxL9m0ozngn1cj9XIslznsyu1SP_AodZdzM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Acid magmatism and related metallogenesis in the Erzgebirge</title><source>Wiley Online Library All Journals</source><creator>Tischendorf, G. ; Förster, H.-J.</creator><creatorcontrib>Tischendorf, G. ; Förster, H.-J.</creatorcontrib><description>In the Erzgebirge two post‐collisional Hercynian granitoid complexes are developed: an older one, monzogranitic, moderately specialized, Sri = 0·7064–68, εTNd = ‐1·8 to ‐6·2, 1g fO2 < −13 ± 1, 1g fHF/fH2O = ‐3·9 ± 0·2, S‐type, 340–325 Ma in age, and a younger one, monzo‐ to albitegranitic, highly specialized in Li, Rb, Cs, Sn, and W, Sri disturbed by strong autometasomatic influences, εTNd = −3·8 to −6·0, 1g fO2 < −17 ± 1, 1g fHF/fH2O = ‐3 ± 0·3, I‐type, 310–295 Ma. Postplutonic volcanics (rhyolite, rhyodacite, latite, kersantite–minette) in each case complete the magmatic sequences.
Muscovite–wolframite–molybdenite–pyrite–quartz association is locally related to the older complex, but numerous centres of cassiterite–wolframite–zinnwaldite (or muscovite) deposits are related to the younger one. Both mineralizations are of orthomagmatic origin and underwent strong physicochemical control. Thus, the granites genetically related to the tin‐free older association are conditioned by medium fO2 but low fHF/fH2O, the tin‐bearing younger association, in contrast, is controlled by low fO2 coupled with high fHF/fH2O.
Vertical compositional zonation in magma chambers caused enrichment of compatible elements such as Zn, Pb, Mg, Ca, Ba, Sr, in deeper parts of the chamber and their transition into residual solutions which then may form base metal mineralization as cross‐cutting veins. Mineralization events last up to the Triassic. Probably elements in the later stages were derived either from deep‐originated residual solutions or, increasingly, by leaching of specialized magmatites.</description><identifier>ISSN: 0072-1050</identifier><identifier>EISSN: 1099-1034</identifier><identifier>DOI: 10.1002/gj.3350250326</identifier><identifier>CODEN: GELJA8</identifier><language>eng</language><publisher>Chichester: John Wiley & Sons Ltd</publisher><subject>Crystalline rocks ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geochemical exploration, methodology, general ; Hercynian magmatites ; Igneous and metamorphic rocks petrology, volcanic processes, magmas ; Leucocratic metallogenesis ; Melanocratic metallogenesis ; Metallic and non-metallic deposits ; Tin mineralization</subject><ispartof>Geological journal (Chichester, England), 1990-07, Vol.25 (3-4), p.443-454</ispartof><rights>Copyright © 1990 John Wiley & Sons, Ltd</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3746-cac2d570a04f526a2d99abd30ff292fccd4b2a1dfaf566aa981d1562d595b8553</citedby><cites>FETCH-LOGICAL-a3746-cac2d570a04f526a2d99abd30ff292fccd4b2a1dfaf566aa981d1562d595b8553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fgj.3350250326$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fgj.3350250326$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19815926$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tischendorf, G.</creatorcontrib><creatorcontrib>Förster, H.-J.</creatorcontrib><title>Acid magmatism and related metallogenesis in the Erzgebirge</title><title>Geological journal (Chichester, England)</title><addtitle>Geol. J</addtitle><description>In the Erzgebirge two post‐collisional Hercynian granitoid complexes are developed: an older one, monzogranitic, moderately specialized, Sri = 0·7064–68, εTNd = ‐1·8 to ‐6·2, 1g fO2 < −13 ± 1, 1g fHF/fH2O = ‐3·9 ± 0·2, S‐type, 340–325 Ma in age, and a younger one, monzo‐ to albitegranitic, highly specialized in Li, Rb, Cs, Sn, and W, Sri disturbed by strong autometasomatic influences, εTNd = −3·8 to −6·0, 1g fO2 < −17 ± 1, 1g fHF/fH2O = ‐3 ± 0·3, I‐type, 310–295 Ma. Postplutonic volcanics (rhyolite, rhyodacite, latite, kersantite–minette) in each case complete the magmatic sequences.
Muscovite–wolframite–molybdenite–pyrite–quartz association is locally related to the older complex, but numerous centres of cassiterite–wolframite–zinnwaldite (or muscovite) deposits are related to the younger one. Both mineralizations are of orthomagmatic origin and underwent strong physicochemical control. Thus, the granites genetically related to the tin‐free older association are conditioned by medium fO2 but low fHF/fH2O, the tin‐bearing younger association, in contrast, is controlled by low fO2 coupled with high fHF/fH2O.
Vertical compositional zonation in magma chambers caused enrichment of compatible elements such as Zn, Pb, Mg, Ca, Ba, Sr, in deeper parts of the chamber and their transition into residual solutions which then may form base metal mineralization as cross‐cutting veins. Mineralization events last up to the Triassic. Probably elements in the later stages were derived either from deep‐originated residual solutions or, increasingly, by leaching of specialized magmatites.</description><subject>Crystalline rocks</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geochemical exploration, methodology, general</subject><subject>Hercynian magmatites</subject><subject>Igneous and metamorphic rocks petrology, volcanic processes, magmas</subject><subject>Leucocratic metallogenesis</subject><subject>Melanocratic metallogenesis</subject><subject>Metallic and non-metallic deposits</subject><subject>Tin mineralization</subject><issn>0072-1050</issn><issn>1099-1034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNp9jzFPwzAQhS0EEqUwsmdhTDnbcVKLqURtAVUwAGK0LrEdXJK0siNB-fUEWlGxMN3p9L337hFyTmFEAdhltRxxLoAJ4Cw9IAMKUsYUeHJIBgAZ63cBx-QkhCUApZDQAbmalE5HDVYNdi40EbY68qbGzvRX02FdryrTmuBC5NqoezXR1H9WpnC-MqfkyGIdzNluDsnzbPqU38SLh_ltPlnEyLMkjUssmRYZICRWsBSZlhILzcFaJpktS50UDKm2aEWaIsox1VSkvUaKYiwEH5J461v6VQjeWLX2rkG_URTUd3NVLdW-ec9fbPk1hhJr67EtXdiL-gAhf7hsy7272mz-N1Xzuz8Ju49c6MzHrxL9m0ozngn1cj9XIslznsyu1SP_AodZdzM</recordid><startdate>199007</startdate><enddate>199007</enddate><creator>Tischendorf, G.</creator><creator>Förster, H.-J.</creator><general>John Wiley & Sons Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199007</creationdate><title>Acid magmatism and related metallogenesis in the Erzgebirge</title><author>Tischendorf, G. ; Förster, H.-J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3746-cac2d570a04f526a2d99abd30ff292fccd4b2a1dfaf566aa981d1562d595b8553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Crystalline rocks</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geochemical exploration, methodology, general</topic><topic>Hercynian magmatites</topic><topic>Igneous and metamorphic rocks petrology, volcanic processes, magmas</topic><topic>Leucocratic metallogenesis</topic><topic>Melanocratic metallogenesis</topic><topic>Metallic and non-metallic deposits</topic><topic>Tin mineralization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tischendorf, G.</creatorcontrib><creatorcontrib>Förster, H.-J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Geological journal (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tischendorf, G.</au><au>Förster, H.-J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acid magmatism and related metallogenesis in the Erzgebirge</atitle><jtitle>Geological journal (Chichester, England)</jtitle><addtitle>Geol. J</addtitle><date>1990-07</date><risdate>1990</risdate><volume>25</volume><issue>3-4</issue><spage>443</spage><epage>454</epage><pages>443-454</pages><issn>0072-1050</issn><eissn>1099-1034</eissn><coden>GELJA8</coden><abstract>In the Erzgebirge two post‐collisional Hercynian granitoid complexes are developed: an older one, monzogranitic, moderately specialized, Sri = 0·7064–68, εTNd = ‐1·8 to ‐6·2, 1g fO2 < −13 ± 1, 1g fHF/fH2O = ‐3·9 ± 0·2, S‐type, 340–325 Ma in age, and a younger one, monzo‐ to albitegranitic, highly specialized in Li, Rb, Cs, Sn, and W, Sri disturbed by strong autometasomatic influences, εTNd = −3·8 to −6·0, 1g fO2 < −17 ± 1, 1g fHF/fH2O = ‐3 ± 0·3, I‐type, 310–295 Ma. Postplutonic volcanics (rhyolite, rhyodacite, latite, kersantite–minette) in each case complete the magmatic sequences.
Muscovite–wolframite–molybdenite–pyrite–quartz association is locally related to the older complex, but numerous centres of cassiterite–wolframite–zinnwaldite (or muscovite) deposits are related to the younger one. Both mineralizations are of orthomagmatic origin and underwent strong physicochemical control. Thus, the granites genetically related to the tin‐free older association are conditioned by medium fO2 but low fHF/fH2O, the tin‐bearing younger association, in contrast, is controlled by low fO2 coupled with high fHF/fH2O.
Vertical compositional zonation in magma chambers caused enrichment of compatible elements such as Zn, Pb, Mg, Ca, Ba, Sr, in deeper parts of the chamber and their transition into residual solutions which then may form base metal mineralization as cross‐cutting veins. Mineralization events last up to the Triassic. Probably elements in the later stages were derived either from deep‐originated residual solutions or, increasingly, by leaching of specialized magmatites.</abstract><cop>Chichester</cop><pub>John Wiley & Sons Ltd</pub><doi>10.1002/gj.3350250326</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0072-1050 |
ispartof | Geological journal (Chichester, England), 1990-07, Vol.25 (3-4), p.443-454 |
issn | 0072-1050 1099-1034 |
language | eng |
recordid | cdi_crossref_primary_10_1002_gj_3350250326 |
source | Wiley Online Library All Journals |
subjects | Crystalline rocks Earth sciences Earth, ocean, space Exact sciences and technology Geochemical exploration, methodology, general Hercynian magmatites Igneous and metamorphic rocks petrology, volcanic processes, magmas Leucocratic metallogenesis Melanocratic metallogenesis Metallic and non-metallic deposits Tin mineralization |
title | Acid magmatism and related metallogenesis in the Erzgebirge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acid%20magmatism%20and%20related%20metallogenesis%20in%20the%20Erzgebirge&rft.jtitle=Geological%20journal%20(Chichester,%20England)&rft.au=Tischendorf,%20G.&rft.date=1990-07&rft.volume=25&rft.issue=3-4&rft.spage=443&rft.epage=454&rft.pages=443-454&rft.issn=0072-1050&rft.eissn=1099-1034&rft.coden=GELJA8&rft_id=info:doi/10.1002/gj.3350250326&rft_dat=%3Cwiley_cross%3EGJ3350250326%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |