Acid magmatism and related metallogenesis in the Erzgebirge

In the Erzgebirge two post‐collisional Hercynian granitoid complexes are developed: an older one, monzogranitic, moderately specialized, Sri = 0·7064–68, εTNd = ‐1·8 to ‐6·2, 1g fO2 < −13 ± 1, 1g fHF/fH2O = ‐3·9 ± 0·2, S‐type, 340–325 Ma in age, and a younger one, monzo‐ to albitegranitic, highly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geological journal (Chichester, England) England), 1990-07, Vol.25 (3-4), p.443-454
Hauptverfasser: Tischendorf, G., Förster, H.-J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 454
container_issue 3-4
container_start_page 443
container_title Geological journal (Chichester, England)
container_volume 25
creator Tischendorf, G.
Förster, H.-J.
description In the Erzgebirge two post‐collisional Hercynian granitoid complexes are developed: an older one, monzogranitic, moderately specialized, Sri = 0·7064–68, εTNd = ‐1·8 to ‐6·2, 1g fO2 < −13 ± 1, 1g fHF/fH2O = ‐3·9 ± 0·2, S‐type, 340–325 Ma in age, and a younger one, monzo‐ to albitegranitic, highly specialized in Li, Rb, Cs, Sn, and W, Sri disturbed by strong autometasomatic influences, εTNd = −3·8 to −6·0, 1g fO2 < −17 ± 1, 1g fHF/fH2O = ‐3 ± 0·3, I‐type, 310–295 Ma. Postplutonic volcanics (rhyolite, rhyodacite, latite, kersantite–minette) in each case complete the magmatic sequences. Muscovite–wolframite–molybdenite–pyrite–quartz association is locally related to the older complex, but numerous centres of cassiterite–wolframite–zinnwaldite (or muscovite) deposits are related to the younger one. Both mineralizations are of orthomagmatic origin and underwent strong physicochemical control. Thus, the granites genetically related to the tin‐free older association are conditioned by medium fO2 but low fHF/fH2O, the tin‐bearing younger association, in contrast, is controlled by low fO2 coupled with high fHF/fH2O. Vertical compositional zonation in magma chambers caused enrichment of compatible elements such as Zn, Pb, Mg, Ca, Ba, Sr, in deeper parts of the chamber and their transition into residual solutions which then may form base metal mineralization as cross‐cutting veins. Mineralization events last up to the Triassic. Probably elements in the later stages were derived either from deep‐originated residual solutions or, increasingly, by leaching of specialized magmatites.
doi_str_mv 10.1002/gj.3350250326
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_gj_3350250326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GJ3350250326</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3746-cac2d570a04f526a2d99abd30ff292fccd4b2a1dfaf566aa981d1562d595b8553</originalsourceid><addsrcrecordid>eNp9jzFPwzAQhS0EEqUwsmdhTDnbcVKLqURtAVUwAGK0LrEdXJK0siNB-fUEWlGxMN3p9L337hFyTmFEAdhltRxxLoAJ4Cw9IAMKUsYUeHJIBgAZ63cBx-QkhCUApZDQAbmalE5HDVYNdi40EbY68qbGzvRX02FdryrTmuBC5NqoezXR1H9WpnC-MqfkyGIdzNluDsnzbPqU38SLh_ltPlnEyLMkjUssmRYZICRWsBSZlhILzcFaJpktS50UDKm2aEWaIsox1VSkvUaKYiwEH5J461v6VQjeWLX2rkG_URTUd3NVLdW-ec9fbPk1hhJr67EtXdiL-gAhf7hsy7272mz-N1Xzuz8Ju49c6MzHrxL9m0ozngn1cj9XIslznsyu1SP_AodZdzM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Acid magmatism and related metallogenesis in the Erzgebirge</title><source>Wiley Online Library All Journals</source><creator>Tischendorf, G. ; Förster, H.-J.</creator><creatorcontrib>Tischendorf, G. ; Förster, H.-J.</creatorcontrib><description>In the Erzgebirge two post‐collisional Hercynian granitoid complexes are developed: an older one, monzogranitic, moderately specialized, Sri = 0·7064–68, εTNd = ‐1·8 to ‐6·2, 1g fO2 &lt; −13 ± 1, 1g fHF/fH2O = ‐3·9 ± 0·2, S‐type, 340–325 Ma in age, and a younger one, monzo‐ to albitegranitic, highly specialized in Li, Rb, Cs, Sn, and W, Sri disturbed by strong autometasomatic influences, εTNd = −3·8 to −6·0, 1g fO2 &lt; −17 ± 1, 1g fHF/fH2O = ‐3 ± 0·3, I‐type, 310–295 Ma. Postplutonic volcanics (rhyolite, rhyodacite, latite, kersantite–minette) in each case complete the magmatic sequences. Muscovite–wolframite–molybdenite–pyrite–quartz association is locally related to the older complex, but numerous centres of cassiterite–wolframite–zinnwaldite (or muscovite) deposits are related to the younger one. Both mineralizations are of orthomagmatic origin and underwent strong physicochemical control. Thus, the granites genetically related to the tin‐free older association are conditioned by medium fO2 but low fHF/fH2O, the tin‐bearing younger association, in contrast, is controlled by low fO2 coupled with high fHF/fH2O. Vertical compositional zonation in magma chambers caused enrichment of compatible elements such as Zn, Pb, Mg, Ca, Ba, Sr, in deeper parts of the chamber and their transition into residual solutions which then may form base metal mineralization as cross‐cutting veins. Mineralization events last up to the Triassic. Probably elements in the later stages were derived either from deep‐originated residual solutions or, increasingly, by leaching of specialized magmatites.</description><identifier>ISSN: 0072-1050</identifier><identifier>EISSN: 1099-1034</identifier><identifier>DOI: 10.1002/gj.3350250326</identifier><identifier>CODEN: GELJA8</identifier><language>eng</language><publisher>Chichester: John Wiley &amp; Sons Ltd</publisher><subject>Crystalline rocks ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geochemical exploration, methodology, general ; Hercynian magmatites ; Igneous and metamorphic rocks petrology, volcanic processes, magmas ; Leucocratic metallogenesis ; Melanocratic metallogenesis ; Metallic and non-metallic deposits ; Tin mineralization</subject><ispartof>Geological journal (Chichester, England), 1990-07, Vol.25 (3-4), p.443-454</ispartof><rights>Copyright © 1990 John Wiley &amp; Sons, Ltd</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3746-cac2d570a04f526a2d99abd30ff292fccd4b2a1dfaf566aa981d1562d595b8553</citedby><cites>FETCH-LOGICAL-a3746-cac2d570a04f526a2d99abd30ff292fccd4b2a1dfaf566aa981d1562d595b8553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fgj.3350250326$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fgj.3350250326$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19815926$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tischendorf, G.</creatorcontrib><creatorcontrib>Förster, H.-J.</creatorcontrib><title>Acid magmatism and related metallogenesis in the Erzgebirge</title><title>Geological journal (Chichester, England)</title><addtitle>Geol. J</addtitle><description>In the Erzgebirge two post‐collisional Hercynian granitoid complexes are developed: an older one, monzogranitic, moderately specialized, Sri = 0·7064–68, εTNd = ‐1·8 to ‐6·2, 1g fO2 &lt; −13 ± 1, 1g fHF/fH2O = ‐3·9 ± 0·2, S‐type, 340–325 Ma in age, and a younger one, monzo‐ to albitegranitic, highly specialized in Li, Rb, Cs, Sn, and W, Sri disturbed by strong autometasomatic influences, εTNd = −3·8 to −6·0, 1g fO2 &lt; −17 ± 1, 1g fHF/fH2O = ‐3 ± 0·3, I‐type, 310–295 Ma. Postplutonic volcanics (rhyolite, rhyodacite, latite, kersantite–minette) in each case complete the magmatic sequences. Muscovite–wolframite–molybdenite–pyrite–quartz association is locally related to the older complex, but numerous centres of cassiterite–wolframite–zinnwaldite (or muscovite) deposits are related to the younger one. Both mineralizations are of orthomagmatic origin and underwent strong physicochemical control. Thus, the granites genetically related to the tin‐free older association are conditioned by medium fO2 but low fHF/fH2O, the tin‐bearing younger association, in contrast, is controlled by low fO2 coupled with high fHF/fH2O. Vertical compositional zonation in magma chambers caused enrichment of compatible elements such as Zn, Pb, Mg, Ca, Ba, Sr, in deeper parts of the chamber and their transition into residual solutions which then may form base metal mineralization as cross‐cutting veins. Mineralization events last up to the Triassic. Probably elements in the later stages were derived either from deep‐originated residual solutions or, increasingly, by leaching of specialized magmatites.</description><subject>Crystalline rocks</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geochemical exploration, methodology, general</subject><subject>Hercynian magmatites</subject><subject>Igneous and metamorphic rocks petrology, volcanic processes, magmas</subject><subject>Leucocratic metallogenesis</subject><subject>Melanocratic metallogenesis</subject><subject>Metallic and non-metallic deposits</subject><subject>Tin mineralization</subject><issn>0072-1050</issn><issn>1099-1034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNp9jzFPwzAQhS0EEqUwsmdhTDnbcVKLqURtAVUwAGK0LrEdXJK0siNB-fUEWlGxMN3p9L337hFyTmFEAdhltRxxLoAJ4Cw9IAMKUsYUeHJIBgAZ63cBx-QkhCUApZDQAbmalE5HDVYNdi40EbY68qbGzvRX02FdryrTmuBC5NqoezXR1H9WpnC-MqfkyGIdzNluDsnzbPqU38SLh_ltPlnEyLMkjUssmRYZICRWsBSZlhILzcFaJpktS50UDKm2aEWaIsox1VSkvUaKYiwEH5J461v6VQjeWLX2rkG_URTUd3NVLdW-ec9fbPk1hhJr67EtXdiL-gAhf7hsy7272mz-N1Xzuz8Ju49c6MzHrxL9m0ozngn1cj9XIslznsyu1SP_AodZdzM</recordid><startdate>199007</startdate><enddate>199007</enddate><creator>Tischendorf, G.</creator><creator>Förster, H.-J.</creator><general>John Wiley &amp; Sons Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199007</creationdate><title>Acid magmatism and related metallogenesis in the Erzgebirge</title><author>Tischendorf, G. ; Förster, H.-J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3746-cac2d570a04f526a2d99abd30ff292fccd4b2a1dfaf566aa981d1562d595b8553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Crystalline rocks</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geochemical exploration, methodology, general</topic><topic>Hercynian magmatites</topic><topic>Igneous and metamorphic rocks petrology, volcanic processes, magmas</topic><topic>Leucocratic metallogenesis</topic><topic>Melanocratic metallogenesis</topic><topic>Metallic and non-metallic deposits</topic><topic>Tin mineralization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tischendorf, G.</creatorcontrib><creatorcontrib>Förster, H.-J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Geological journal (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tischendorf, G.</au><au>Förster, H.-J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acid magmatism and related metallogenesis in the Erzgebirge</atitle><jtitle>Geological journal (Chichester, England)</jtitle><addtitle>Geol. J</addtitle><date>1990-07</date><risdate>1990</risdate><volume>25</volume><issue>3-4</issue><spage>443</spage><epage>454</epage><pages>443-454</pages><issn>0072-1050</issn><eissn>1099-1034</eissn><coden>GELJA8</coden><abstract>In the Erzgebirge two post‐collisional Hercynian granitoid complexes are developed: an older one, monzogranitic, moderately specialized, Sri = 0·7064–68, εTNd = ‐1·8 to ‐6·2, 1g fO2 &lt; −13 ± 1, 1g fHF/fH2O = ‐3·9 ± 0·2, S‐type, 340–325 Ma in age, and a younger one, monzo‐ to albitegranitic, highly specialized in Li, Rb, Cs, Sn, and W, Sri disturbed by strong autometasomatic influences, εTNd = −3·8 to −6·0, 1g fO2 &lt; −17 ± 1, 1g fHF/fH2O = ‐3 ± 0·3, I‐type, 310–295 Ma. Postplutonic volcanics (rhyolite, rhyodacite, latite, kersantite–minette) in each case complete the magmatic sequences. Muscovite–wolframite–molybdenite–pyrite–quartz association is locally related to the older complex, but numerous centres of cassiterite–wolframite–zinnwaldite (or muscovite) deposits are related to the younger one. Both mineralizations are of orthomagmatic origin and underwent strong physicochemical control. Thus, the granites genetically related to the tin‐free older association are conditioned by medium fO2 but low fHF/fH2O, the tin‐bearing younger association, in contrast, is controlled by low fO2 coupled with high fHF/fH2O. Vertical compositional zonation in magma chambers caused enrichment of compatible elements such as Zn, Pb, Mg, Ca, Ba, Sr, in deeper parts of the chamber and their transition into residual solutions which then may form base metal mineralization as cross‐cutting veins. Mineralization events last up to the Triassic. Probably elements in the later stages were derived either from deep‐originated residual solutions or, increasingly, by leaching of specialized magmatites.</abstract><cop>Chichester</cop><pub>John Wiley &amp; Sons Ltd</pub><doi>10.1002/gj.3350250326</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0072-1050
ispartof Geological journal (Chichester, England), 1990-07, Vol.25 (3-4), p.443-454
issn 0072-1050
1099-1034
language eng
recordid cdi_crossref_primary_10_1002_gj_3350250326
source Wiley Online Library All Journals
subjects Crystalline rocks
Earth sciences
Earth, ocean, space
Exact sciences and technology
Geochemical exploration, methodology, general
Hercynian magmatites
Igneous and metamorphic rocks petrology, volcanic processes, magmas
Leucocratic metallogenesis
Melanocratic metallogenesis
Metallic and non-metallic deposits
Tin mineralization
title Acid magmatism and related metallogenesis in the Erzgebirge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acid%20magmatism%20and%20related%20metallogenesis%20in%20the%20Erzgebirge&rft.jtitle=Geological%20journal%20(Chichester,%20England)&rft.au=Tischendorf,%20G.&rft.date=1990-07&rft.volume=25&rft.issue=3-4&rft.spage=443&rft.epage=454&rft.pages=443-454&rft.issn=0072-1050&rft.eissn=1099-1034&rft.coden=GELJA8&rft_id=info:doi/10.1002/gj.3350250326&rft_dat=%3Cwiley_cross%3EGJ3350250326%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true