From orogenic to anorogenic settings: Evolution of granitoid suites after a major orogenesis

Many orogenic belts display associations of calc‐alkaline and alkaline igneous centres which are closely related in space and time. The sequence: calc‐alkaline batholith→uplift and unroofing→alkaline plutonic–volcanic complexes, lasts less than 100 Ma and documents a very fast switch from orogenic t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geological journal (Chichester, England) England), 1990-07, Vol.25 (3-4), p.261-270
1. Verfasser: Bonin, Bernard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 270
container_issue 3-4
container_start_page 261
container_title Geological journal (Chichester, England)
container_volume 25
creator Bonin, Bernard
description Many orogenic belts display associations of calc‐alkaline and alkaline igneous centres which are closely related in space and time. The sequence: calc‐alkaline batholith→uplift and unroofing→alkaline plutonic–volcanic complexes, lasts less than 100 Ma and documents a very fast switch from orogenic to anorogenic geodynamic conditions. The magmatic suites have a mantle origin with decreasing crustal contribution, but the sources and the types of differentiation processes differ. Alkaline granites can be subdivided in two groups: 1 Post‐orogenic Ba and Sr‐rich red granites having Mg‐rich mafic minerals and high content of Mn whether they are peralkaline or peraluminous. Crustal contribution is indicated by Sr isotopic signatures. Water‐rich fluids are responsible for the subsolvus crystallization of alkali feldspars and for the high oxygen fugacity. Magmatic centres were emplaced less than 10 Ma after the late‐orogenic formations. 2 Early anorogenic Ba and Sr‐poor greenish to whitish hypersolvus granites having Fe‐rich mafic minerals, low contents of Mn, and virtually no Mg F‐rich aqueous fluids are probably less abundant and promote subsolidus hydrothermal alteration with only subordinate late‐stage oxidation. Crustal contamination can be ruled out for the non‐mineralized complexes, but can be important in the hydrothermal mineralized areas. The magmatic centres are considerably younger than the first group. During the first 100 Ma following the end of a major orogeny, a new mantle source replaces the old complex system of mixed oceanic–continental crust‐mantle sources and produces alkaline melts which are subsequently less and less contaminated by crustal host rocks. Relations between hydrothermal events, mineralizations, and crustal isotope signatures suggest that crustal contribution relates to percolating fluids and not to anatexis of lower and/or middle crust.
doi_str_mv 10.1002/gj.3350250309
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_gj_3350250309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GJ3350250309</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4409-95bb7fc5e815f64dcc7163706d410b9250a2cdab4a2c04a4f668b072203471ab3</originalsourceid><addsrcrecordid>eNp9UMFKAzEUDKJgrR695-Jx68smu-l609JWpVYEpSJCyGazS9Z2U5Kt2r830tLixdO8BzPz3gxC5wR6BCC-rOoepQnECVDIDlCHQJZFBCg7RB0AHoc5gWN04n0NQAgw0kHvI2cX2Dpb6cYo3Fosm93mdduapvJXePhp56vW2AbbEldONqa1psB-ZVrtsSxb7bDEC1lbtzXT3vhTdFTKuddnW-yil9HweXAbTR7Hd4PrSSQZgyzKkjznpUp0nyRlygqlOEkph7RgBPIs5JGxKmTOAgCTrEzTfh7yxCEaJzKnXRRtfJWz3jtdiqUzC-nWgoD4rUZUtdhXE_gXG_5SeiXnZcijjN-LMs5on0Lg8Q3vy8z1-n9TMb7_c2H7kfGt_t4ppfsQKac8EbPpWIxep28PTzczMaE_2faDow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>From orogenic to anorogenic settings: Evolution of granitoid suites after a major orogenesis</title><source>Access via Wiley Online Library</source><creator>Bonin, Bernard</creator><creatorcontrib>Bonin, Bernard</creatorcontrib><description>Many orogenic belts display associations of calc‐alkaline and alkaline igneous centres which are closely related in space and time. The sequence: calc‐alkaline batholith→uplift and unroofing→alkaline plutonic–volcanic complexes, lasts less than 100 Ma and documents a very fast switch from orogenic to anorogenic geodynamic conditions. The magmatic suites have a mantle origin with decreasing crustal contribution, but the sources and the types of differentiation processes differ. Alkaline granites can be subdivided in two groups: 1 Post‐orogenic Ba and Sr‐rich red granites having Mg‐rich mafic minerals and high content of Mn whether they are peralkaline or peraluminous. Crustal contribution is indicated by Sr isotopic signatures. Water‐rich fluids are responsible for the subsolvus crystallization of alkali feldspars and for the high oxygen fugacity. Magmatic centres were emplaced less than 10 Ma after the late‐orogenic formations. 2 Early anorogenic Ba and Sr‐poor greenish to whitish hypersolvus granites having Fe‐rich mafic minerals, low contents of Mn, and virtually no Mg F‐rich aqueous fluids are probably less abundant and promote subsolidus hydrothermal alteration with only subordinate late‐stage oxidation. Crustal contamination can be ruled out for the non‐mineralized complexes, but can be important in the hydrothermal mineralized areas. The magmatic centres are considerably younger than the first group. During the first 100 Ma following the end of a major orogeny, a new mantle source replaces the old complex system of mixed oceanic–continental crust‐mantle sources and produces alkaline melts which are subsequently less and less contaminated by crustal host rocks. Relations between hydrothermal events, mineralizations, and crustal isotope signatures suggest that crustal contribution relates to percolating fluids and not to anatexis of lower and/or middle crust.</description><identifier>ISSN: 0072-1050</identifier><identifier>EISSN: 1099-1034</identifier><identifier>DOI: 10.1002/gj.3350250309</identifier><identifier>CODEN: GELJA8</identifier><language>eng</language><publisher>Chichester: John Wiley &amp; Sons Ltd</publisher><subject>Anorogenic ; Crystalline rocks ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Femic minerals ; Geochemistry ; Igneous and metamorphic rocks petrology, volcanic processes, magmas ; Mantle-crust interactions ; Orogenic ; Soil and rock geochemistry ; Trace element chemistry</subject><ispartof>Geological journal (Chichester, England), 1990-07, Vol.25 (3-4), p.261-270</ispartof><rights>Copyright © 1990 John Wiley &amp; Sons, Ltd</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4409-95bb7fc5e815f64dcc7163706d410b9250a2cdab4a2c04a4f668b072203471ab3</citedby><cites>FETCH-LOGICAL-a4409-95bb7fc5e815f64dcc7163706d410b9250a2cdab4a2c04a4f668b072203471ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fgj.3350250309$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fgj.3350250309$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19743830$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonin, Bernard</creatorcontrib><title>From orogenic to anorogenic settings: Evolution of granitoid suites after a major orogenesis</title><title>Geological journal (Chichester, England)</title><addtitle>Geol. J</addtitle><description>Many orogenic belts display associations of calc‐alkaline and alkaline igneous centres which are closely related in space and time. The sequence: calc‐alkaline batholith→uplift and unroofing→alkaline plutonic–volcanic complexes, lasts less than 100 Ma and documents a very fast switch from orogenic to anorogenic geodynamic conditions. The magmatic suites have a mantle origin with decreasing crustal contribution, but the sources and the types of differentiation processes differ. Alkaline granites can be subdivided in two groups: 1 Post‐orogenic Ba and Sr‐rich red granites having Mg‐rich mafic minerals and high content of Mn whether they are peralkaline or peraluminous. Crustal contribution is indicated by Sr isotopic signatures. Water‐rich fluids are responsible for the subsolvus crystallization of alkali feldspars and for the high oxygen fugacity. Magmatic centres were emplaced less than 10 Ma after the late‐orogenic formations. 2 Early anorogenic Ba and Sr‐poor greenish to whitish hypersolvus granites having Fe‐rich mafic minerals, low contents of Mn, and virtually no Mg F‐rich aqueous fluids are probably less abundant and promote subsolidus hydrothermal alteration with only subordinate late‐stage oxidation. Crustal contamination can be ruled out for the non‐mineralized complexes, but can be important in the hydrothermal mineralized areas. The magmatic centres are considerably younger than the first group. During the first 100 Ma following the end of a major orogeny, a new mantle source replaces the old complex system of mixed oceanic–continental crust‐mantle sources and produces alkaline melts which are subsequently less and less contaminated by crustal host rocks. Relations between hydrothermal events, mineralizations, and crustal isotope signatures suggest that crustal contribution relates to percolating fluids and not to anatexis of lower and/or middle crust.</description><subject>Anorogenic</subject><subject>Crystalline rocks</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Femic minerals</subject><subject>Geochemistry</subject><subject>Igneous and metamorphic rocks petrology, volcanic processes, magmas</subject><subject>Mantle-crust interactions</subject><subject>Orogenic</subject><subject>Soil and rock geochemistry</subject><subject>Trace element chemistry</subject><issn>0072-1050</issn><issn>1099-1034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNp9UMFKAzEUDKJgrR695-Jx68smu-l609JWpVYEpSJCyGazS9Z2U5Kt2r830tLixdO8BzPz3gxC5wR6BCC-rOoepQnECVDIDlCHQJZFBCg7RB0AHoc5gWN04n0NQAgw0kHvI2cX2Dpb6cYo3Fosm93mdduapvJXePhp56vW2AbbEldONqa1psB-ZVrtsSxb7bDEC1lbtzXT3vhTdFTKuddnW-yil9HweXAbTR7Hd4PrSSQZgyzKkjznpUp0nyRlygqlOEkph7RgBPIs5JGxKmTOAgCTrEzTfh7yxCEaJzKnXRRtfJWz3jtdiqUzC-nWgoD4rUZUtdhXE_gXG_5SeiXnZcijjN-LMs5on0Lg8Q3vy8z1-n9TMb7_c2H7kfGt_t4ppfsQKac8EbPpWIxep28PTzczMaE_2faDow</recordid><startdate>199007</startdate><enddate>199007</enddate><creator>Bonin, Bernard</creator><general>John Wiley &amp; Sons Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199007</creationdate><title>From orogenic to anorogenic settings: Evolution of granitoid suites after a major orogenesis</title><author>Bonin, Bernard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4409-95bb7fc5e815f64dcc7163706d410b9250a2cdab4a2c04a4f668b072203471ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Anorogenic</topic><topic>Crystalline rocks</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Femic minerals</topic><topic>Geochemistry</topic><topic>Igneous and metamorphic rocks petrology, volcanic processes, magmas</topic><topic>Mantle-crust interactions</topic><topic>Orogenic</topic><topic>Soil and rock geochemistry</topic><topic>Trace element chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonin, Bernard</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Geological journal (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonin, Bernard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From orogenic to anorogenic settings: Evolution of granitoid suites after a major orogenesis</atitle><jtitle>Geological journal (Chichester, England)</jtitle><addtitle>Geol. J</addtitle><date>1990-07</date><risdate>1990</risdate><volume>25</volume><issue>3-4</issue><spage>261</spage><epage>270</epage><pages>261-270</pages><issn>0072-1050</issn><eissn>1099-1034</eissn><coden>GELJA8</coden><abstract>Many orogenic belts display associations of calc‐alkaline and alkaline igneous centres which are closely related in space and time. The sequence: calc‐alkaline batholith→uplift and unroofing→alkaline plutonic–volcanic complexes, lasts less than 100 Ma and documents a very fast switch from orogenic to anorogenic geodynamic conditions. The magmatic suites have a mantle origin with decreasing crustal contribution, but the sources and the types of differentiation processes differ. Alkaline granites can be subdivided in two groups: 1 Post‐orogenic Ba and Sr‐rich red granites having Mg‐rich mafic minerals and high content of Mn whether they are peralkaline or peraluminous. Crustal contribution is indicated by Sr isotopic signatures. Water‐rich fluids are responsible for the subsolvus crystallization of alkali feldspars and for the high oxygen fugacity. Magmatic centres were emplaced less than 10 Ma after the late‐orogenic formations. 2 Early anorogenic Ba and Sr‐poor greenish to whitish hypersolvus granites having Fe‐rich mafic minerals, low contents of Mn, and virtually no Mg F‐rich aqueous fluids are probably less abundant and promote subsolidus hydrothermal alteration with only subordinate late‐stage oxidation. Crustal contamination can be ruled out for the non‐mineralized complexes, but can be important in the hydrothermal mineralized areas. The magmatic centres are considerably younger than the first group. During the first 100 Ma following the end of a major orogeny, a new mantle source replaces the old complex system of mixed oceanic–continental crust‐mantle sources and produces alkaline melts which are subsequently less and less contaminated by crustal host rocks. Relations between hydrothermal events, mineralizations, and crustal isotope signatures suggest that crustal contribution relates to percolating fluids and not to anatexis of lower and/or middle crust.</abstract><cop>Chichester</cop><pub>John Wiley &amp; Sons Ltd</pub><doi>10.1002/gj.3350250309</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0072-1050
ispartof Geological journal (Chichester, England), 1990-07, Vol.25 (3-4), p.261-270
issn 0072-1050
1099-1034
language eng
recordid cdi_crossref_primary_10_1002_gj_3350250309
source Access via Wiley Online Library
subjects Anorogenic
Crystalline rocks
Earth sciences
Earth, ocean, space
Exact sciences and technology
Femic minerals
Geochemistry
Igneous and metamorphic rocks petrology, volcanic processes, magmas
Mantle-crust interactions
Orogenic
Soil and rock geochemistry
Trace element chemistry
title From orogenic to anorogenic settings: Evolution of granitoid suites after a major orogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A51%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20orogenic%20to%20anorogenic%20settings:%20Evolution%20of%20granitoid%20suites%20after%20a%20major%20orogenesis&rft.jtitle=Geological%20journal%20(Chichester,%20England)&rft.au=Bonin,%20Bernard&rft.date=1990-07&rft.volume=25&rft.issue=3-4&rft.spage=261&rft.epage=270&rft.pages=261-270&rft.issn=0072-1050&rft.eissn=1099-1034&rft.coden=GELJA8&rft_id=info:doi/10.1002/gj.3350250309&rft_dat=%3Cwiley_cross%3EGJ3350250309%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true