High‐order DG solvers for underresolved turbulent incompressible flows: A comparison of L 2 and H (div) methods

The accurate numerical simulation of turbulent incompressible flows is a challenging topic in computational fluid dynamics. For discretisation methods to be robust in the underresolved regime, mass conservation and energy stability are key ingredients to obtain robust and accurate discretisations. R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in fluids 2019-12, Vol.91 (11), p.533-556
Hauptverfasser: Fehn, Niklas, Kronbichler, Martin, Lehrenfeld, Christoph, Lube, Gert, Schroeder, Philipp W.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 556
container_issue 11
container_start_page 533
container_title International journal for numerical methods in fluids
container_volume 91
creator Fehn, Niklas
Kronbichler, Martin
Lehrenfeld, Christoph
Lube, Gert
Schroeder, Philipp W.
description The accurate numerical simulation of turbulent incompressible flows is a challenging topic in computational fluid dynamics. For discretisation methods to be robust in the underresolved regime, mass conservation and energy stability are key ingredients to obtain robust and accurate discretisations. Recently, two approaches have been proposed in the context of high‐order discontinuous Galerkin (DG) discretisations that address these aspects differently. On the one hand, standard L 2 ‐based DG discretisations enforce mass conservation and energy stability weakly by the use of additional stabilisation terms. On the other hand, pointwise divergence‐free H (div)‐conforming approaches ensure exact mass conservation and energy stability by the use of tailored finite element function spaces. This work raises the question whether and to which extent these two approaches are equivalent when applied to underresolved turbulent flows. This comparative study highlights similarities and differences of these two approaches. The numerical results emphasise that both discretisation strategies are promising for underresolved simulations of turbulent flows due to their inherent dissipation mechanisms.
doi_str_mv 10.1002/fld.4763
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_fld_4763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_fld_4763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c157t-33e3fe4d882f0559245dfdbae783749b67e2a1dcf8c64efe52a3bf988ec8863f3</originalsourceid><addsrcrecordid>eNotkM1Kw0AURgdRsFbBR7jLukidnyQzcVeqtkLBja7DJHOvjaSZOpNU3PkIPqNPYquuPjgfnMVh7FLwqeBcXlPrpqnO1REbCV7ohKtcHbMRl1okkhfilJ3F-Mo5L6RRI_a2bF7W359fPjgMcLuA6NsdhgjkAwzdHgb8RQ76IVRDi10PTVf7zXZ_xKZqEaj17_EGZnCgNjTRd-AJViDBdg6WMHHN7go22K-9i-fshGwb8eJ_x-z5_u5pvkxWj4uH-WyV1CLTfaIUKsLUGSOJZ1kh08yRqyxqo3RaVLlGaYWrydR5ioSZtKqiwhisjckVqTGb_Hnr4GMMSOU2NBsbPkrBy0Oqcp-qPKRSP3t_Xnk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High‐order DG solvers for underresolved turbulent incompressible flows: A comparison of L 2 and H (div) methods</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fehn, Niklas ; Kronbichler, Martin ; Lehrenfeld, Christoph ; Lube, Gert ; Schroeder, Philipp W.</creator><creatorcontrib>Fehn, Niklas ; Kronbichler, Martin ; Lehrenfeld, Christoph ; Lube, Gert ; Schroeder, Philipp W.</creatorcontrib><description>The accurate numerical simulation of turbulent incompressible flows is a challenging topic in computational fluid dynamics. For discretisation methods to be robust in the underresolved regime, mass conservation and energy stability are key ingredients to obtain robust and accurate discretisations. Recently, two approaches have been proposed in the context of high‐order discontinuous Galerkin (DG) discretisations that address these aspects differently. On the one hand, standard L 2 ‐based DG discretisations enforce mass conservation and energy stability weakly by the use of additional stabilisation terms. On the other hand, pointwise divergence‐free H (div)‐conforming approaches ensure exact mass conservation and energy stability by the use of tailored finite element function spaces. This work raises the question whether and to which extent these two approaches are equivalent when applied to underresolved turbulent flows. This comparative study highlights similarities and differences of these two approaches. The numerical results emphasise that both discretisation strategies are promising for underresolved simulations of turbulent flows due to their inherent dissipation mechanisms.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.4763</identifier><language>eng</language><ispartof>International journal for numerical methods in fluids, 2019-12, Vol.91 (11), p.533-556</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c157t-33e3fe4d882f0559245dfdbae783749b67e2a1dcf8c64efe52a3bf988ec8863f3</citedby><cites>FETCH-LOGICAL-c157t-33e3fe4d882f0559245dfdbae783749b67e2a1dcf8c64efe52a3bf988ec8863f3</cites><orcidid>0000-0003-0170-8468 ; 0000-0001-7644-4693 ; 0000-0001-8406-835X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Fehn, Niklas</creatorcontrib><creatorcontrib>Kronbichler, Martin</creatorcontrib><creatorcontrib>Lehrenfeld, Christoph</creatorcontrib><creatorcontrib>Lube, Gert</creatorcontrib><creatorcontrib>Schroeder, Philipp W.</creatorcontrib><title>High‐order DG solvers for underresolved turbulent incompressible flows: A comparison of L 2 and H (div) methods</title><title>International journal for numerical methods in fluids</title><description>The accurate numerical simulation of turbulent incompressible flows is a challenging topic in computational fluid dynamics. For discretisation methods to be robust in the underresolved regime, mass conservation and energy stability are key ingredients to obtain robust and accurate discretisations. Recently, two approaches have been proposed in the context of high‐order discontinuous Galerkin (DG) discretisations that address these aspects differently. On the one hand, standard L 2 ‐based DG discretisations enforce mass conservation and energy stability weakly by the use of additional stabilisation terms. On the other hand, pointwise divergence‐free H (div)‐conforming approaches ensure exact mass conservation and energy stability by the use of tailored finite element function spaces. This work raises the question whether and to which extent these two approaches are equivalent when applied to underresolved turbulent flows. This comparative study highlights similarities and differences of these two approaches. The numerical results emphasise that both discretisation strategies are promising for underresolved simulations of turbulent flows due to their inherent dissipation mechanisms.</description><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkM1Kw0AURgdRsFbBR7jLukidnyQzcVeqtkLBja7DJHOvjaSZOpNU3PkIPqNPYquuPjgfnMVh7FLwqeBcXlPrpqnO1REbCV7ohKtcHbMRl1okkhfilJ3F-Mo5L6RRI_a2bF7W359fPjgMcLuA6NsdhgjkAwzdHgb8RQ76IVRDi10PTVf7zXZ_xKZqEaj17_EGZnCgNjTRd-AJViDBdg6WMHHN7go22K-9i-fshGwb8eJ_x-z5_u5pvkxWj4uH-WyV1CLTfaIUKsLUGSOJZ1kh08yRqyxqo3RaVLlGaYWrydR5ioSZtKqiwhisjckVqTGb_Hnr4GMMSOU2NBsbPkrBy0Oqcp-qPKRSP3t_Xnk</recordid><startdate>20191220</startdate><enddate>20191220</enddate><creator>Fehn, Niklas</creator><creator>Kronbichler, Martin</creator><creator>Lehrenfeld, Christoph</creator><creator>Lube, Gert</creator><creator>Schroeder, Philipp W.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0170-8468</orcidid><orcidid>https://orcid.org/0000-0001-7644-4693</orcidid><orcidid>https://orcid.org/0000-0001-8406-835X</orcidid></search><sort><creationdate>20191220</creationdate><title>High‐order DG solvers for underresolved turbulent incompressible flows: A comparison of L 2 and H (div) methods</title><author>Fehn, Niklas ; Kronbichler, Martin ; Lehrenfeld, Christoph ; Lube, Gert ; Schroeder, Philipp W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c157t-33e3fe4d882f0559245dfdbae783749b67e2a1dcf8c64efe52a3bf988ec8863f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fehn, Niklas</creatorcontrib><creatorcontrib>Kronbichler, Martin</creatorcontrib><creatorcontrib>Lehrenfeld, Christoph</creatorcontrib><creatorcontrib>Lube, Gert</creatorcontrib><creatorcontrib>Schroeder, Philipp W.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fehn, Niklas</au><au>Kronbichler, Martin</au><au>Lehrenfeld, Christoph</au><au>Lube, Gert</au><au>Schroeder, Philipp W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐order DG solvers for underresolved turbulent incompressible flows: A comparison of L 2 and H (div) methods</atitle><jtitle>International journal for numerical methods in fluids</jtitle><date>2019-12-20</date><risdate>2019</risdate><volume>91</volume><issue>11</issue><spage>533</spage><epage>556</epage><pages>533-556</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><abstract>The accurate numerical simulation of turbulent incompressible flows is a challenging topic in computational fluid dynamics. For discretisation methods to be robust in the underresolved regime, mass conservation and energy stability are key ingredients to obtain robust and accurate discretisations. Recently, two approaches have been proposed in the context of high‐order discontinuous Galerkin (DG) discretisations that address these aspects differently. On the one hand, standard L 2 ‐based DG discretisations enforce mass conservation and energy stability weakly by the use of additional stabilisation terms. On the other hand, pointwise divergence‐free H (div)‐conforming approaches ensure exact mass conservation and energy stability by the use of tailored finite element function spaces. This work raises the question whether and to which extent these two approaches are equivalent when applied to underresolved turbulent flows. This comparative study highlights similarities and differences of these two approaches. The numerical results emphasise that both discretisation strategies are promising for underresolved simulations of turbulent flows due to their inherent dissipation mechanisms.</abstract><doi>10.1002/fld.4763</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-0170-8468</orcidid><orcidid>https://orcid.org/0000-0001-7644-4693</orcidid><orcidid>https://orcid.org/0000-0001-8406-835X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0271-2091
ispartof International journal for numerical methods in fluids, 2019-12, Vol.91 (11), p.533-556
issn 0271-2091
1097-0363
language eng
recordid cdi_crossref_primary_10_1002_fld_4763
source Wiley Online Library Journals Frontfile Complete
title High‐order DG solvers for underresolved turbulent incompressible flows: A comparison of L 2 and H (div) methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T05%3A32%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90order%20DG%20solvers%20for%20underresolved%20turbulent%20incompressible%20flows:%20A%20comparison%20of%20L%202%20and%20H%20(div)%20methods&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Fehn,%20Niklas&rft.date=2019-12-20&rft.volume=91&rft.issue=11&rft.spage=533&rft.epage=556&rft.pages=533-556&rft.issn=0271-2091&rft.eissn=1097-0363&rft_id=info:doi/10.1002/fld.4763&rft_dat=%3Ccrossref%3E10_1002_fld_4763%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true