Positivity-preserving, flux-limited finite-difference and finite-element methods for reactive transport
A new class of positivity‐preserving, flux‐limited finite‐difference and Petrov–Galerkin (PG) finite‐element methods are devised for reactive transport problems.The methods are similar to classical TVD flux‐limited schemes with the main difference being that the flux‐limiter constraint is designed t...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in fluids 2003-01, Vol.41 (2), p.151-183 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 183 |
---|---|
container_issue | 2 |
container_start_page | 151 |
container_title | International journal for numerical methods in fluids |
container_volume | 41 |
creator | MacKinnon, Robert J. Carey, Graham F. |
description | A new class of positivity‐preserving, flux‐limited finite‐difference and Petrov–Galerkin (PG) finite‐element methods are devised for reactive transport problems.The methods are similar to classical TVD flux‐limited schemes with the main difference being that the flux‐limiter constraint is designed to preserve positivity for problems involving diffusion and reaction. In the finite‐element formulation, we also consider the effect of numerical quadrature in the lumped and consistent mass matrix forms on the positivity‐preserving property. Analysis of the latter scheme shows that positivity‐preserving solutions of the resulting difference equations can only be guaranteed if the flux‐limited scheme is both implicit and satisfies an additional lower‐bound condition on time‐step size. We show that this condition also applies to standard Galerkin linear finite‐element approximations to the linear diffusion equation. Numerical experiments are provided to demonstrate the behavior of the methods and confirm the theoretical conditions on time‐step size, mesh spacing, and flux limiting for transport problems with and without nonlinear reaction. Copyright © 2003 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/fld.433 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_fld_433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>FLD433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3273-9478fe89402b0c10d029c5c60163dfafd7226e9927327da6a1eae539d0a808d03</originalsourceid><addsrcrecordid>eNp10MlKBDEQBuAgCo4LvkJfxINGK0lPp3MUxw3H5aDoLcSkotGe7iFpl3l7Iy168lRF8fFT_IRsMdhnAPzAN26_FGKJjBgoSUFUYpmMgEtGOSi2StZSegEAxWsxIk83XQp9eA_9gs4jJozvoX3aK3zz9kmbMAs9usKHNk_qgvcYsbVYmPb3ig3OsO2LGfbPnUuF72IR0dgcikUfTZvmXew3yIo3TcLNn7lO7k6Ob4_O6PT69PzocEqt4FJQVcraY61K4I9gGTjgyo5tBawSzhvvJOcVKpUtl85UhqHBsVAOTA21A7FOdoZcG7uUIno9j2Fm4kIz0N_96NyPzv1kuT3IuUnWND5_akP642XJx0LU2e0O7iM0uPgvTp9MJ0MqHXRIPX7-ahNfdSWFHOv7q1N9JR7k5cXZJC9fR3uEBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Positivity-preserving, flux-limited finite-difference and finite-element methods for reactive transport</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>MacKinnon, Robert J. ; Carey, Graham F.</creator><creatorcontrib>MacKinnon, Robert J. ; Carey, Graham F.</creatorcontrib><description>A new class of positivity‐preserving, flux‐limited finite‐difference and Petrov–Galerkin (PG) finite‐element methods are devised for reactive transport problems.The methods are similar to classical TVD flux‐limited schemes with the main difference being that the flux‐limiter constraint is designed to preserve positivity for problems involving diffusion and reaction. In the finite‐element formulation, we also consider the effect of numerical quadrature in the lumped and consistent mass matrix forms on the positivity‐preserving property. Analysis of the latter scheme shows that positivity‐preserving solutions of the resulting difference equations can only be guaranteed if the flux‐limited scheme is both implicit and satisfies an additional lower‐bound condition on time‐step size. We show that this condition also applies to standard Galerkin linear finite‐element approximations to the linear diffusion equation. Numerical experiments are provided to demonstrate the behavior of the methods and confirm the theoretical conditions on time‐step size, mesh spacing, and flux limiting for transport problems with and without nonlinear reaction. Copyright © 2003 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.433</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Chemically reactive flows ; Computational methods in fluid dynamics ; convection-diffusion-reaction equation ; Exact sciences and technology ; finite-difference method ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Petrov-Galerkin method ; Physics ; positivity preserving ; Reactive, radiative, or nonequilibrium flows ; total variation diminishing ; upwinding</subject><ispartof>International journal for numerical methods in fluids, 2003-01, Vol.41 (2), p.151-183</ispartof><rights>Copyright © 2003 John Wiley & Sons, Ltd.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3273-9478fe89402b0c10d029c5c60163dfafd7226e9927327da6a1eae539d0a808d03</citedby><cites>FETCH-LOGICAL-c3273-9478fe89402b0c10d029c5c60163dfafd7226e9927327da6a1eae539d0a808d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.433$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.433$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14425338$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MacKinnon, Robert J.</creatorcontrib><creatorcontrib>Carey, Graham F.</creatorcontrib><title>Positivity-preserving, flux-limited finite-difference and finite-element methods for reactive transport</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>A new class of positivity‐preserving, flux‐limited finite‐difference and Petrov–Galerkin (PG) finite‐element methods are devised for reactive transport problems.The methods are similar to classical TVD flux‐limited schemes with the main difference being that the flux‐limiter constraint is designed to preserve positivity for problems involving diffusion and reaction. In the finite‐element formulation, we also consider the effect of numerical quadrature in the lumped and consistent mass matrix forms on the positivity‐preserving property. Analysis of the latter scheme shows that positivity‐preserving solutions of the resulting difference equations can only be guaranteed if the flux‐limited scheme is both implicit and satisfies an additional lower‐bound condition on time‐step size. We show that this condition also applies to standard Galerkin linear finite‐element approximations to the linear diffusion equation. Numerical experiments are provided to demonstrate the behavior of the methods and confirm the theoretical conditions on time‐step size, mesh spacing, and flux limiting for transport problems with and without nonlinear reaction. Copyright © 2003 John Wiley & Sons, Ltd.</description><subject>Chemically reactive flows</subject><subject>Computational methods in fluid dynamics</subject><subject>convection-diffusion-reaction equation</subject><subject>Exact sciences and technology</subject><subject>finite-difference method</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Petrov-Galerkin method</subject><subject>Physics</subject><subject>positivity preserving</subject><subject>Reactive, radiative, or nonequilibrium flows</subject><subject>total variation diminishing</subject><subject>upwinding</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp10MlKBDEQBuAgCo4LvkJfxINGK0lPp3MUxw3H5aDoLcSkotGe7iFpl3l7Iy168lRF8fFT_IRsMdhnAPzAN26_FGKJjBgoSUFUYpmMgEtGOSi2StZSegEAxWsxIk83XQp9eA_9gs4jJozvoX3aK3zz9kmbMAs9usKHNk_qgvcYsbVYmPb3ig3OsO2LGfbPnUuF72IR0dgcikUfTZvmXew3yIo3TcLNn7lO7k6Ob4_O6PT69PzocEqt4FJQVcraY61K4I9gGTjgyo5tBawSzhvvJOcVKpUtl85UhqHBsVAOTA21A7FOdoZcG7uUIno9j2Fm4kIz0N_96NyPzv1kuT3IuUnWND5_akP642XJx0LU2e0O7iM0uPgvTp9MJ0MqHXRIPX7-ahNfdSWFHOv7q1N9JR7k5cXZJC9fR3uEBA</recordid><startdate>20030120</startdate><enddate>20030120</enddate><creator>MacKinnon, Robert J.</creator><creator>Carey, Graham F.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030120</creationdate><title>Positivity-preserving, flux-limited finite-difference and finite-element methods for reactive transport</title><author>MacKinnon, Robert J. ; Carey, Graham F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3273-9478fe89402b0c10d029c5c60163dfafd7226e9927327da6a1eae539d0a808d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Chemically reactive flows</topic><topic>Computational methods in fluid dynamics</topic><topic>convection-diffusion-reaction equation</topic><topic>Exact sciences and technology</topic><topic>finite-difference method</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Petrov-Galerkin method</topic><topic>Physics</topic><topic>positivity preserving</topic><topic>Reactive, radiative, or nonequilibrium flows</topic><topic>total variation diminishing</topic><topic>upwinding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacKinnon, Robert J.</creatorcontrib><creatorcontrib>Carey, Graham F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MacKinnon, Robert J.</au><au>Carey, Graham F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positivity-preserving, flux-limited finite-difference and finite-element methods for reactive transport</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2003-01-20</date><risdate>2003</risdate><volume>41</volume><issue>2</issue><spage>151</spage><epage>183</epage><pages>151-183</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>A new class of positivity‐preserving, flux‐limited finite‐difference and Petrov–Galerkin (PG) finite‐element methods are devised for reactive transport problems.The methods are similar to classical TVD flux‐limited schemes with the main difference being that the flux‐limiter constraint is designed to preserve positivity for problems involving diffusion and reaction. In the finite‐element formulation, we also consider the effect of numerical quadrature in the lumped and consistent mass matrix forms on the positivity‐preserving property. Analysis of the latter scheme shows that positivity‐preserving solutions of the resulting difference equations can only be guaranteed if the flux‐limited scheme is both implicit and satisfies an additional lower‐bound condition on time‐step size. We show that this condition also applies to standard Galerkin linear finite‐element approximations to the linear diffusion equation. Numerical experiments are provided to demonstrate the behavior of the methods and confirm the theoretical conditions on time‐step size, mesh spacing, and flux limiting for transport problems with and without nonlinear reaction. Copyright © 2003 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/fld.433</doi><tpages>33</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-2091 |
ispartof | International journal for numerical methods in fluids, 2003-01, Vol.41 (2), p.151-183 |
issn | 0271-2091 1097-0363 |
language | eng |
recordid | cdi_crossref_primary_10_1002_fld_433 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Chemically reactive flows Computational methods in fluid dynamics convection-diffusion-reaction equation Exact sciences and technology finite-difference method Fluid dynamics Fundamental areas of phenomenology (including applications) Petrov-Galerkin method Physics positivity preserving Reactive, radiative, or nonequilibrium flows total variation diminishing upwinding |
title | Positivity-preserving, flux-limited finite-difference and finite-element methods for reactive transport |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positivity-preserving,%20flux-limited%20finite-difference%20and%20finite-element%20methods%20for%20reactive%20transport&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=MacKinnon,%20Robert%20J.&rft.date=2003-01-20&rft.volume=41&rft.issue=2&rft.spage=151&rft.epage=183&rft.pages=151-183&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.433&rft_dat=%3Cwiley_cross%3EFLD433%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |