Vortex structure and strength of secondary flows in model aortic arches

A numerical method is developed to study the flow structures in the aortic arch. The method solves the incompressible Navier–Stokes equations. It uses a third‐order upwind scheme for the convective terms and the second‐order central scheme for the viscous terms. A DDADI time integration is used for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in fluids 2002-09, Vol.40 (3-4), p.379-389
Hauptverfasser: Lin, San-Yih, Yu, Zhong-Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 389
container_issue 3-4
container_start_page 379
container_title International journal for numerical methods in fluids
container_volume 40
creator Lin, San-Yih
Yu, Zhong-Xin
description A numerical method is developed to study the flow structures in the aortic arch. The method solves the incompressible Navier–Stokes equations. It uses a third‐order upwind scheme for the convective terms and the second‐order central scheme for the viscous terms. A DDADI time integration is used for achieving fast convergence. For the unsteady solutions, the second‐order Crank–Nicolson method coupled with the diagonalized diagonal dominated alternating direction implicit scheme (DDADI) time integration are used. The numerical results show that the method is about 2.5‐order accuracy in space and 1.8‐order accuracy in time. Then the method is used to investigate the vortex structure and strength of secondary flows in the aortic arch. Four different arch geometries are constructed to see the effect of arch configuration. Many flow properties such as pressure drop, vortex strength and separation are computed and compared among the four arch models. Copyright © 2002 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/fld.293
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_fld_293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>FLD293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3273-563585235ac3de103cf005cb05e146ce59aaf24dcf1ee45fb4c5f97cf6833f23</originalsourceid><addsrcrecordid>eNp10EFLwzAUB_AgCs4pfoVcxIN0vuQ1bXPUzU1l6g5DjyFLE1ft2pF0zH17Oyp68hQe_N6f9w8h5wwGDIBfuzIfcIkHpMdAphFggoekBzxlEQfJjslJCB8AIHmGPTJ5rX1jv2ho_MY0G2-prvL9ZKv3ZklrR4M1dZVrv6OurLeBFhVd1bktqW43C0O1N0sbTsmR02WwZz9vn8zHd_PhfTR9mTwMb6aRQZ5iJBIUmeAotMHcMkDjAIRZgLAsTowVUmvH49w4Zm0s3CI2wsnUuCRDdBz75LKLNb4OwVun1r5YtccpBmpfX7X1VVu_lRedXOtgdOm8rkwR_jjKmLE0a91V57ZFaXf_xanxdNSlRp0uQvtrv1r7T5WkmAr19jxRs9vkCWajRyXxG-pWd6s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vortex structure and strength of secondary flows in model aortic arches</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lin, San-Yih ; Yu, Zhong-Xin</creator><creatorcontrib>Lin, San-Yih ; Yu, Zhong-Xin</creatorcontrib><description>A numerical method is developed to study the flow structures in the aortic arch. The method solves the incompressible Navier–Stokes equations. It uses a third‐order upwind scheme for the convective terms and the second‐order central scheme for the viscous terms. A DDADI time integration is used for achieving fast convergence. For the unsteady solutions, the second‐order Crank–Nicolson method coupled with the diagonalized diagonal dominated alternating direction implicit scheme (DDADI) time integration are used. The numerical results show that the method is about 2.5‐order accuracy in space and 1.8‐order accuracy in time. Then the method is used to investigate the vortex structure and strength of secondary flows in the aortic arch. Four different arch geometries are constructed to see the effect of arch configuration. Many flow properties such as pressure drop, vortex strength and separation are computed and compared among the four arch models. Copyright © 2002 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.293</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>aortic Arch ; Biological and medical sciences ; Biomechanics. Biorheology ; Computational methods in fluid dynamics ; Crank-Nicolson method ; DDADI ; Exact sciences and technology ; Flows in ducts, channels, nozzles, and conduits ; Fluid dynamics ; Fundamental and applied biological sciences. Psychology ; Fundamental areas of phenomenology (including applications) ; Haemodynamics, pneumodynamics ; incompressible flow ; Physics ; secondary flow ; Tissues, organs and organisms biophysics</subject><ispartof>International journal for numerical methods in fluids, 2002-09, Vol.40 (3-4), p.379-389</ispartof><rights>Copyright © 2002 John Wiley &amp; Sons, Ltd.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3273-563585235ac3de103cf005cb05e146ce59aaf24dcf1ee45fb4c5f97cf6833f23</citedby><cites>FETCH-LOGICAL-c3273-563585235ac3de103cf005cb05e146ce59aaf24dcf1ee45fb4c5f97cf6833f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.293$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.293$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,1411,23911,23912,25120,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13941178$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, San-Yih</creatorcontrib><creatorcontrib>Yu, Zhong-Xin</creatorcontrib><title>Vortex structure and strength of secondary flows in model aortic arches</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>A numerical method is developed to study the flow structures in the aortic arch. The method solves the incompressible Navier–Stokes equations. It uses a third‐order upwind scheme for the convective terms and the second‐order central scheme for the viscous terms. A DDADI time integration is used for achieving fast convergence. For the unsteady solutions, the second‐order Crank–Nicolson method coupled with the diagonalized diagonal dominated alternating direction implicit scheme (DDADI) time integration are used. The numerical results show that the method is about 2.5‐order accuracy in space and 1.8‐order accuracy in time. Then the method is used to investigate the vortex structure and strength of secondary flows in the aortic arch. Four different arch geometries are constructed to see the effect of arch configuration. Many flow properties such as pressure drop, vortex strength and separation are computed and compared among the four arch models. Copyright © 2002 John Wiley &amp; Sons, Ltd.</description><subject>aortic Arch</subject><subject>Biological and medical sciences</subject><subject>Biomechanics. Biorheology</subject><subject>Computational methods in fluid dynamics</subject><subject>Crank-Nicolson method</subject><subject>DDADI</subject><subject>Exact sciences and technology</subject><subject>Flows in ducts, channels, nozzles, and conduits</subject><subject>Fluid dynamics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Haemodynamics, pneumodynamics</subject><subject>incompressible flow</subject><subject>Physics</subject><subject>secondary flow</subject><subject>Tissues, organs and organisms biophysics</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp10EFLwzAUB_AgCs4pfoVcxIN0vuQ1bXPUzU1l6g5DjyFLE1ft2pF0zH17Oyp68hQe_N6f9w8h5wwGDIBfuzIfcIkHpMdAphFggoekBzxlEQfJjslJCB8AIHmGPTJ5rX1jv2ho_MY0G2-prvL9ZKv3ZklrR4M1dZVrv6OurLeBFhVd1bktqW43C0O1N0sbTsmR02WwZz9vn8zHd_PhfTR9mTwMb6aRQZ5iJBIUmeAotMHcMkDjAIRZgLAsTowVUmvH49w4Zm0s3CI2wsnUuCRDdBz75LKLNb4OwVun1r5YtccpBmpfX7X1VVu_lRedXOtgdOm8rkwR_jjKmLE0a91V57ZFaXf_xanxdNSlRp0uQvtrv1r7T5WkmAr19jxRs9vkCWajRyXxG-pWd6s</recordid><startdate>20020930</startdate><enddate>20020930</enddate><creator>Lin, San-Yih</creator><creator>Yu, Zhong-Xin</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020930</creationdate><title>Vortex structure and strength of secondary flows in model aortic arches</title><author>Lin, San-Yih ; Yu, Zhong-Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3273-563585235ac3de103cf005cb05e146ce59aaf24dcf1ee45fb4c5f97cf6833f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>aortic Arch</topic><topic>Biological and medical sciences</topic><topic>Biomechanics. Biorheology</topic><topic>Computational methods in fluid dynamics</topic><topic>Crank-Nicolson method</topic><topic>DDADI</topic><topic>Exact sciences and technology</topic><topic>Flows in ducts, channels, nozzles, and conduits</topic><topic>Fluid dynamics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Haemodynamics, pneumodynamics</topic><topic>incompressible flow</topic><topic>Physics</topic><topic>secondary flow</topic><topic>Tissues, organs and organisms biophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, San-Yih</creatorcontrib><creatorcontrib>Yu, Zhong-Xin</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, San-Yih</au><au>Yu, Zhong-Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vortex structure and strength of secondary flows in model aortic arches</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2002-09-30</date><risdate>2002</risdate><volume>40</volume><issue>3-4</issue><spage>379</spage><epage>389</epage><pages>379-389</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>A numerical method is developed to study the flow structures in the aortic arch. The method solves the incompressible Navier–Stokes equations. It uses a third‐order upwind scheme for the convective terms and the second‐order central scheme for the viscous terms. A DDADI time integration is used for achieving fast convergence. For the unsteady solutions, the second‐order Crank–Nicolson method coupled with the diagonalized diagonal dominated alternating direction implicit scheme (DDADI) time integration are used. The numerical results show that the method is about 2.5‐order accuracy in space and 1.8‐order accuracy in time. Then the method is used to investigate the vortex structure and strength of secondary flows in the aortic arch. Four different arch geometries are constructed to see the effect of arch configuration. Many flow properties such as pressure drop, vortex strength and separation are computed and compared among the four arch models. Copyright © 2002 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/fld.293</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0271-2091
ispartof International journal for numerical methods in fluids, 2002-09, Vol.40 (3-4), p.379-389
issn 0271-2091
1097-0363
language eng
recordid cdi_crossref_primary_10_1002_fld_293
source Wiley Online Library Journals Frontfile Complete
subjects aortic Arch
Biological and medical sciences
Biomechanics. Biorheology
Computational methods in fluid dynamics
Crank-Nicolson method
DDADI
Exact sciences and technology
Flows in ducts, channels, nozzles, and conduits
Fluid dynamics
Fundamental and applied biological sciences. Psychology
Fundamental areas of phenomenology (including applications)
Haemodynamics, pneumodynamics
incompressible flow
Physics
secondary flow
Tissues, organs and organisms biophysics
title Vortex structure and strength of secondary flows in model aortic arches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A52%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vortex%20structure%20and%20strength%20of%20secondary%20flows%20in%20model%20aortic%20arches&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Lin,%20San-Yih&rft.date=2002-09-30&rft.volume=40&rft.issue=3-4&rft.spage=379&rft.epage=389&rft.pages=379-389&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.293&rft_dat=%3Cwiley_cross%3EFLD293%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true