Vortex structure and strength of secondary flows in model aortic arches
A numerical method is developed to study the flow structures in the aortic arch. The method solves the incompressible Navier–Stokes equations. It uses a third‐order upwind scheme for the convective terms and the second‐order central scheme for the viscous terms. A DDADI time integration is used for...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in fluids 2002-09, Vol.40 (3-4), p.379-389 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 389 |
---|---|
container_issue | 3-4 |
container_start_page | 379 |
container_title | International journal for numerical methods in fluids |
container_volume | 40 |
creator | Lin, San-Yih Yu, Zhong-Xin |
description | A numerical method is developed to study the flow structures in the aortic arch. The method solves the incompressible Navier–Stokes equations. It uses a third‐order upwind scheme for the convective terms and the second‐order central scheme for the viscous terms. A DDADI time integration is used for achieving fast convergence. For the unsteady solutions, the second‐order Crank–Nicolson method coupled with the diagonalized diagonal dominated alternating direction implicit scheme (DDADI) time integration are used. The numerical results show that the method is about 2.5‐order accuracy in space and 1.8‐order accuracy in time. Then the method is used to investigate the vortex structure and strength of secondary flows in the aortic arch. Four different arch geometries are constructed to see the effect of arch configuration. Many flow properties such as pressure drop, vortex strength and separation are computed and compared among the four arch models. Copyright © 2002 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/fld.293 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_fld_293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>FLD293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3273-563585235ac3de103cf005cb05e146ce59aaf24dcf1ee45fb4c5f97cf6833f23</originalsourceid><addsrcrecordid>eNp10EFLwzAUB_AgCs4pfoVcxIN0vuQ1bXPUzU1l6g5DjyFLE1ft2pF0zH17Oyp68hQe_N6f9w8h5wwGDIBfuzIfcIkHpMdAphFggoekBzxlEQfJjslJCB8AIHmGPTJ5rX1jv2ho_MY0G2-prvL9ZKv3ZklrR4M1dZVrv6OurLeBFhVd1bktqW43C0O1N0sbTsmR02WwZz9vn8zHd_PhfTR9mTwMb6aRQZ5iJBIUmeAotMHcMkDjAIRZgLAsTowVUmvH49w4Zm0s3CI2wsnUuCRDdBz75LKLNb4OwVun1r5YtccpBmpfX7X1VVu_lRedXOtgdOm8rkwR_jjKmLE0a91V57ZFaXf_xanxdNSlRp0uQvtrv1r7T5WkmAr19jxRs9vkCWajRyXxG-pWd6s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vortex structure and strength of secondary flows in model aortic arches</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lin, San-Yih ; Yu, Zhong-Xin</creator><creatorcontrib>Lin, San-Yih ; Yu, Zhong-Xin</creatorcontrib><description>A numerical method is developed to study the flow structures in the aortic arch. The method solves the incompressible Navier–Stokes equations. It uses a third‐order upwind scheme for the convective terms and the second‐order central scheme for the viscous terms. A DDADI time integration is used for achieving fast convergence. For the unsteady solutions, the second‐order Crank–Nicolson method coupled with the diagonalized diagonal dominated alternating direction implicit scheme (DDADI) time integration are used. The numerical results show that the method is about 2.5‐order accuracy in space and 1.8‐order accuracy in time. Then the method is used to investigate the vortex structure and strength of secondary flows in the aortic arch. Four different arch geometries are constructed to see the effect of arch configuration. Many flow properties such as pressure drop, vortex strength and separation are computed and compared among the four arch models. Copyright © 2002 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.293</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>aortic Arch ; Biological and medical sciences ; Biomechanics. Biorheology ; Computational methods in fluid dynamics ; Crank-Nicolson method ; DDADI ; Exact sciences and technology ; Flows in ducts, channels, nozzles, and conduits ; Fluid dynamics ; Fundamental and applied biological sciences. Psychology ; Fundamental areas of phenomenology (including applications) ; Haemodynamics, pneumodynamics ; incompressible flow ; Physics ; secondary flow ; Tissues, organs and organisms biophysics</subject><ispartof>International journal for numerical methods in fluids, 2002-09, Vol.40 (3-4), p.379-389</ispartof><rights>Copyright © 2002 John Wiley & Sons, Ltd.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3273-563585235ac3de103cf005cb05e146ce59aaf24dcf1ee45fb4c5f97cf6833f23</citedby><cites>FETCH-LOGICAL-c3273-563585235ac3de103cf005cb05e146ce59aaf24dcf1ee45fb4c5f97cf6833f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.293$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.293$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,1411,23911,23912,25120,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13941178$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, San-Yih</creatorcontrib><creatorcontrib>Yu, Zhong-Xin</creatorcontrib><title>Vortex structure and strength of secondary flows in model aortic arches</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>A numerical method is developed to study the flow structures in the aortic arch. The method solves the incompressible Navier–Stokes equations. It uses a third‐order upwind scheme for the convective terms and the second‐order central scheme for the viscous terms. A DDADI time integration is used for achieving fast convergence. For the unsteady solutions, the second‐order Crank–Nicolson method coupled with the diagonalized diagonal dominated alternating direction implicit scheme (DDADI) time integration are used. The numerical results show that the method is about 2.5‐order accuracy in space and 1.8‐order accuracy in time. Then the method is used to investigate the vortex structure and strength of secondary flows in the aortic arch. Four different arch geometries are constructed to see the effect of arch configuration. Many flow properties such as pressure drop, vortex strength and separation are computed and compared among the four arch models. Copyright © 2002 John Wiley & Sons, Ltd.</description><subject>aortic Arch</subject><subject>Biological and medical sciences</subject><subject>Biomechanics. Biorheology</subject><subject>Computational methods in fluid dynamics</subject><subject>Crank-Nicolson method</subject><subject>DDADI</subject><subject>Exact sciences and technology</subject><subject>Flows in ducts, channels, nozzles, and conduits</subject><subject>Fluid dynamics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Haemodynamics, pneumodynamics</subject><subject>incompressible flow</subject><subject>Physics</subject><subject>secondary flow</subject><subject>Tissues, organs and organisms biophysics</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp10EFLwzAUB_AgCs4pfoVcxIN0vuQ1bXPUzU1l6g5DjyFLE1ft2pF0zH17Oyp68hQe_N6f9w8h5wwGDIBfuzIfcIkHpMdAphFggoekBzxlEQfJjslJCB8AIHmGPTJ5rX1jv2ho_MY0G2-prvL9ZKv3ZklrR4M1dZVrv6OurLeBFhVd1bktqW43C0O1N0sbTsmR02WwZz9vn8zHd_PhfTR9mTwMb6aRQZ5iJBIUmeAotMHcMkDjAIRZgLAsTowVUmvH49w4Zm0s3CI2wsnUuCRDdBz75LKLNb4OwVun1r5YtccpBmpfX7X1VVu_lRedXOtgdOm8rkwR_jjKmLE0a91V57ZFaXf_xanxdNSlRp0uQvtrv1r7T5WkmAr19jxRs9vkCWajRyXxG-pWd6s</recordid><startdate>20020930</startdate><enddate>20020930</enddate><creator>Lin, San-Yih</creator><creator>Yu, Zhong-Xin</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020930</creationdate><title>Vortex structure and strength of secondary flows in model aortic arches</title><author>Lin, San-Yih ; Yu, Zhong-Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3273-563585235ac3de103cf005cb05e146ce59aaf24dcf1ee45fb4c5f97cf6833f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>aortic Arch</topic><topic>Biological and medical sciences</topic><topic>Biomechanics. Biorheology</topic><topic>Computational methods in fluid dynamics</topic><topic>Crank-Nicolson method</topic><topic>DDADI</topic><topic>Exact sciences and technology</topic><topic>Flows in ducts, channels, nozzles, and conduits</topic><topic>Fluid dynamics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Haemodynamics, pneumodynamics</topic><topic>incompressible flow</topic><topic>Physics</topic><topic>secondary flow</topic><topic>Tissues, organs and organisms biophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, San-Yih</creatorcontrib><creatorcontrib>Yu, Zhong-Xin</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, San-Yih</au><au>Yu, Zhong-Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vortex structure and strength of secondary flows in model aortic arches</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2002-09-30</date><risdate>2002</risdate><volume>40</volume><issue>3-4</issue><spage>379</spage><epage>389</epage><pages>379-389</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>A numerical method is developed to study the flow structures in the aortic arch. The method solves the incompressible Navier–Stokes equations. It uses a third‐order upwind scheme for the convective terms and the second‐order central scheme for the viscous terms. A DDADI time integration is used for achieving fast convergence. For the unsteady solutions, the second‐order Crank–Nicolson method coupled with the diagonalized diagonal dominated alternating direction implicit scheme (DDADI) time integration are used. The numerical results show that the method is about 2.5‐order accuracy in space and 1.8‐order accuracy in time. Then the method is used to investigate the vortex structure and strength of secondary flows in the aortic arch. Four different arch geometries are constructed to see the effect of arch configuration. Many flow properties such as pressure drop, vortex strength and separation are computed and compared among the four arch models. Copyright © 2002 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/fld.293</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-2091 |
ispartof | International journal for numerical methods in fluids, 2002-09, Vol.40 (3-4), p.379-389 |
issn | 0271-2091 1097-0363 |
language | eng |
recordid | cdi_crossref_primary_10_1002_fld_293 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | aortic Arch Biological and medical sciences Biomechanics. Biorheology Computational methods in fluid dynamics Crank-Nicolson method DDADI Exact sciences and technology Flows in ducts, channels, nozzles, and conduits Fluid dynamics Fundamental and applied biological sciences. Psychology Fundamental areas of phenomenology (including applications) Haemodynamics, pneumodynamics incompressible flow Physics secondary flow Tissues, organs and organisms biophysics |
title | Vortex structure and strength of secondary flows in model aortic arches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A52%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vortex%20structure%20and%20strength%20of%20secondary%20flows%20in%20model%20aortic%20arches&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Lin,%20San-Yih&rft.date=2002-09-30&rft.volume=40&rft.issue=3-4&rft.spage=379&rft.epage=389&rft.pages=379-389&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.293&rft_dat=%3Cwiley_cross%3EFLD293%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |