A finite element variational multiscale method for incompressible flows based on the construction of the projection basis functions

SUMMARY In this article, we present a finite element variational multiscale (VMS) method for incompressible flows based on the construction of projection basis functions and compare it with common VMS method, which is defined by a low‐order finite element space Lh on the same grid as Xh for the velo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in fluids 2012-10, Vol.70 (6), p.793-804
Hauptverfasser: Yu, Jiaping, Zheng, Haibiao, Shi, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 804
container_issue 6
container_start_page 793
container_title International journal for numerical methods in fluids
container_volume 70
creator Yu, Jiaping
Zheng, Haibiao
Shi, Feng
description SUMMARY In this article, we present a finite element variational multiscale (VMS) method for incompressible flows based on the construction of projection basis functions and compare it with common VMS method, which is defined by a low‐order finite element space Lh on the same grid as Xh for the velocity deformation tensor and a stabilization parameter α. The best algorithmic feature of our method is to construct the projection basis functions at the element level with minimal additional cost to replace the global projection operator. Finally, we give some numerical simulations of the nonlinear flow problems to show good stability and accuracy properties of the method. Copyright © 2011 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/fld.2717
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_fld_2717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_X8K65Z8C_S</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3337-de3eef53de27ba755980ae6d58fdc0c2f00073e1cf0d7be508883ffc80265ee33</originalsourceid><addsrcrecordid>eNp1kEFLwzAUx4MoOKfgR8hF8NKZJmuTHsd0Uxx6UFG8hCx9YZltM5LOubNf3HYdu3l6vP_78YP3R-gyJoOYEHpjinxAecyPUC8mGY8IS9kx6pEmiyjJ4lN0FsKSEJJRwXrod4SNrWwNGAoooarxt_JW1dZVqsDluqht0KoAXEK9cDk2zmNbaVeuPIRg583FFG4T8FwFyLGrcL0ArF0Var_WrQY7s8tW3i2hSxrWBmzW1W4N5-jEqCLAxX720dvk7nV8H82epw_j0SzSjDEe5cAATMJyoHyueJJkgihI80SYXBNNTfMUZxBrQ3I-h4QIIZgxWhCaJgCM9dF159XeheDByJW3pfJbGRPZlieb8mRbXoNedehKte8bryptw4Gn6ZAO06xVRh23sQVs__XJyex2793zNtTwc-CV_5IpZzyR709T-SEe0-RTjOUL-wOVHJBb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A finite element variational multiscale method for incompressible flows based on the construction of the projection basis functions</title><source>Wiley Online Library All Journals</source><creator>Yu, Jiaping ; Zheng, Haibiao ; Shi, Feng</creator><creatorcontrib>Yu, Jiaping ; Zheng, Haibiao ; Shi, Feng</creatorcontrib><description>SUMMARY In this article, we present a finite element variational multiscale (VMS) method for incompressible flows based on the construction of projection basis functions and compare it with common VMS method, which is defined by a low‐order finite element space Lh on the same grid as Xh for the velocity deformation tensor and a stabilization parameter α. The best algorithmic feature of our method is to construct the projection basis functions at the element level with minimal additional cost to replace the global projection operator. Finally, we give some numerical simulations of the nonlinear flow problems to show good stability and accuracy properties of the method. Copyright © 2011 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.2717</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>basis functions ; Computational methods in fluid dynamics ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; incompressible flows ; Physics ; projection ; variational multiscale (VMS) method</subject><ispartof>International journal for numerical methods in fluids, 2012-10, Vol.70 (6), p.793-804</ispartof><rights>Copyright © 2011 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3337-de3eef53de27ba755980ae6d58fdc0c2f00073e1cf0d7be508883ffc80265ee33</citedby><cites>FETCH-LOGICAL-c3337-de3eef53de27ba755980ae6d58fdc0c2f00073e1cf0d7be508883ffc80265ee33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.2717$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.2717$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26424693$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Jiaping</creatorcontrib><creatorcontrib>Zheng, Haibiao</creatorcontrib><creatorcontrib>Shi, Feng</creatorcontrib><title>A finite element variational multiscale method for incompressible flows based on the construction of the projection basis functions</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>SUMMARY In this article, we present a finite element variational multiscale (VMS) method for incompressible flows based on the construction of projection basis functions and compare it with common VMS method, which is defined by a low‐order finite element space Lh on the same grid as Xh for the velocity deformation tensor and a stabilization parameter α. The best algorithmic feature of our method is to construct the projection basis functions at the element level with minimal additional cost to replace the global projection operator. Finally, we give some numerical simulations of the nonlinear flow problems to show good stability and accuracy properties of the method. Copyright © 2011 John Wiley &amp; Sons, Ltd.</description><subject>basis functions</subject><subject>Computational methods in fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>incompressible flows</subject><subject>Physics</subject><subject>projection</subject><subject>variational multiscale (VMS) method</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAUx4MoOKfgR8hF8NKZJmuTHsd0Uxx6UFG8hCx9YZltM5LOubNf3HYdu3l6vP_78YP3R-gyJoOYEHpjinxAecyPUC8mGY8IS9kx6pEmiyjJ4lN0FsKSEJJRwXrod4SNrWwNGAoooarxt_JW1dZVqsDluqht0KoAXEK9cDk2zmNbaVeuPIRg583FFG4T8FwFyLGrcL0ArF0Var_WrQY7s8tW3i2hSxrWBmzW1W4N5-jEqCLAxX720dvk7nV8H82epw_j0SzSjDEe5cAATMJyoHyueJJkgihI80SYXBNNTfMUZxBrQ3I-h4QIIZgxWhCaJgCM9dF159XeheDByJW3pfJbGRPZlieb8mRbXoNedehKte8bryptw4Gn6ZAO06xVRh23sQVs__XJyex2793zNtTwc-CV_5IpZzyR709T-SEe0-RTjOUL-wOVHJBb</recordid><startdate>20121030</startdate><enddate>20121030</enddate><creator>Yu, Jiaping</creator><creator>Zheng, Haibiao</creator><creator>Shi, Feng</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121030</creationdate><title>A finite element variational multiscale method for incompressible flows based on the construction of the projection basis functions</title><author>Yu, Jiaping ; Zheng, Haibiao ; Shi, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3337-de3eef53de27ba755980ae6d58fdc0c2f00073e1cf0d7be508883ffc80265ee33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>basis functions</topic><topic>Computational methods in fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>incompressible flows</topic><topic>Physics</topic><topic>projection</topic><topic>variational multiscale (VMS) method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jiaping</creatorcontrib><creatorcontrib>Zheng, Haibiao</creatorcontrib><creatorcontrib>Shi, Feng</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Jiaping</au><au>Zheng, Haibiao</au><au>Shi, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A finite element variational multiscale method for incompressible flows based on the construction of the projection basis functions</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2012-10-30</date><risdate>2012</risdate><volume>70</volume><issue>6</issue><spage>793</spage><epage>804</epage><pages>793-804</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>SUMMARY In this article, we present a finite element variational multiscale (VMS) method for incompressible flows based on the construction of projection basis functions and compare it with common VMS method, which is defined by a low‐order finite element space Lh on the same grid as Xh for the velocity deformation tensor and a stabilization parameter α. The best algorithmic feature of our method is to construct the projection basis functions at the element level with minimal additional cost to replace the global projection operator. Finally, we give some numerical simulations of the nonlinear flow problems to show good stability and accuracy properties of the method. Copyright © 2011 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/fld.2717</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0271-2091
ispartof International journal for numerical methods in fluids, 2012-10, Vol.70 (6), p.793-804
issn 0271-2091
1097-0363
language eng
recordid cdi_crossref_primary_10_1002_fld_2717
source Wiley Online Library All Journals
subjects basis functions
Computational methods in fluid dynamics
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
incompressible flows
Physics
projection
variational multiscale (VMS) method
title A finite element variational multiscale method for incompressible flows based on the construction of the projection basis functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20finite%20element%20variational%20multiscale%20method%20for%20incompressible%20flows%20based%20on%20the%20construction%20of%20the%20projection%20basis%20functions&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Yu,%20Jiaping&rft.date=2012-10-30&rft.volume=70&rft.issue=6&rft.spage=793&rft.epage=804&rft.pages=793-804&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.2717&rft_dat=%3Cistex_cross%3Eark_67375_WNG_X8K65Z8C_S%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true