A finite element variational multiscale method for incompressible flows based on the construction of the projection basis functions
SUMMARY In this article, we present a finite element variational multiscale (VMS) method for incompressible flows based on the construction of projection basis functions and compare it with common VMS method, which is defined by a low‐order finite element space Lh on the same grid as Xh for the velo...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in fluids 2012-10, Vol.70 (6), p.793-804 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 804 |
---|---|
container_issue | 6 |
container_start_page | 793 |
container_title | International journal for numerical methods in fluids |
container_volume | 70 |
creator | Yu, Jiaping Zheng, Haibiao Shi, Feng |
description | SUMMARY
In this article, we present a finite element variational multiscale (VMS) method for incompressible flows based on the construction of projection basis functions and compare it with common VMS method, which is defined by a low‐order finite element space Lh on the same grid as Xh for the velocity deformation tensor and a stabilization parameter α. The best algorithmic feature of our method is to construct the projection basis functions at the element level with minimal additional cost to replace the global projection operator.
Finally, we give some numerical simulations of the nonlinear flow problems to show good stability and accuracy properties of the method. Copyright © 2011 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/fld.2717 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_fld_2717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_X8K65Z8C_S</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3337-de3eef53de27ba755980ae6d58fdc0c2f00073e1cf0d7be508883ffc80265ee33</originalsourceid><addsrcrecordid>eNp1kEFLwzAUx4MoOKfgR8hF8NKZJmuTHsd0Uxx6UFG8hCx9YZltM5LOubNf3HYdu3l6vP_78YP3R-gyJoOYEHpjinxAecyPUC8mGY8IS9kx6pEmiyjJ4lN0FsKSEJJRwXrod4SNrWwNGAoooarxt_JW1dZVqsDluqht0KoAXEK9cDk2zmNbaVeuPIRg583FFG4T8FwFyLGrcL0ArF0Var_WrQY7s8tW3i2hSxrWBmzW1W4N5-jEqCLAxX720dvk7nV8H82epw_j0SzSjDEe5cAATMJyoHyueJJkgihI80SYXBNNTfMUZxBrQ3I-h4QIIZgxWhCaJgCM9dF159XeheDByJW3pfJbGRPZlieb8mRbXoNedehKte8bryptw4Gn6ZAO06xVRh23sQVs__XJyex2793zNtTwc-CV_5IpZzyR709T-SEe0-RTjOUL-wOVHJBb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A finite element variational multiscale method for incompressible flows based on the construction of the projection basis functions</title><source>Wiley Online Library All Journals</source><creator>Yu, Jiaping ; Zheng, Haibiao ; Shi, Feng</creator><creatorcontrib>Yu, Jiaping ; Zheng, Haibiao ; Shi, Feng</creatorcontrib><description>SUMMARY
In this article, we present a finite element variational multiscale (VMS) method for incompressible flows based on the construction of projection basis functions and compare it with common VMS method, which is defined by a low‐order finite element space Lh on the same grid as Xh for the velocity deformation tensor and a stabilization parameter α. The best algorithmic feature of our method is to construct the projection basis functions at the element level with minimal additional cost to replace the global projection operator.
Finally, we give some numerical simulations of the nonlinear flow problems to show good stability and accuracy properties of the method. Copyright © 2011 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.2717</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>basis functions ; Computational methods in fluid dynamics ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; incompressible flows ; Physics ; projection ; variational multiscale (VMS) method</subject><ispartof>International journal for numerical methods in fluids, 2012-10, Vol.70 (6), p.793-804</ispartof><rights>Copyright © 2011 John Wiley & Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3337-de3eef53de27ba755980ae6d58fdc0c2f00073e1cf0d7be508883ffc80265ee33</citedby><cites>FETCH-LOGICAL-c3337-de3eef53de27ba755980ae6d58fdc0c2f00073e1cf0d7be508883ffc80265ee33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.2717$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.2717$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26424693$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Jiaping</creatorcontrib><creatorcontrib>Zheng, Haibiao</creatorcontrib><creatorcontrib>Shi, Feng</creatorcontrib><title>A finite element variational multiscale method for incompressible flows based on the construction of the projection basis functions</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>SUMMARY
In this article, we present a finite element variational multiscale (VMS) method for incompressible flows based on the construction of projection basis functions and compare it with common VMS method, which is defined by a low‐order finite element space Lh on the same grid as Xh for the velocity deformation tensor and a stabilization parameter α. The best algorithmic feature of our method is to construct the projection basis functions at the element level with minimal additional cost to replace the global projection operator.
Finally, we give some numerical simulations of the nonlinear flow problems to show good stability and accuracy properties of the method. Copyright © 2011 John Wiley & Sons, Ltd.</description><subject>basis functions</subject><subject>Computational methods in fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>incompressible flows</subject><subject>Physics</subject><subject>projection</subject><subject>variational multiscale (VMS) method</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAUx4MoOKfgR8hF8NKZJmuTHsd0Uxx6UFG8hCx9YZltM5LOubNf3HYdu3l6vP_78YP3R-gyJoOYEHpjinxAecyPUC8mGY8IS9kx6pEmiyjJ4lN0FsKSEJJRwXrod4SNrWwNGAoooarxt_JW1dZVqsDluqht0KoAXEK9cDk2zmNbaVeuPIRg583FFG4T8FwFyLGrcL0ArF0Var_WrQY7s8tW3i2hSxrWBmzW1W4N5-jEqCLAxX720dvk7nV8H82epw_j0SzSjDEe5cAATMJyoHyueJJkgihI80SYXBNNTfMUZxBrQ3I-h4QIIZgxWhCaJgCM9dF159XeheDByJW3pfJbGRPZlieb8mRbXoNedehKte8bryptw4Gn6ZAO06xVRh23sQVs__XJyex2793zNtTwc-CV_5IpZzyR709T-SEe0-RTjOUL-wOVHJBb</recordid><startdate>20121030</startdate><enddate>20121030</enddate><creator>Yu, Jiaping</creator><creator>Zheng, Haibiao</creator><creator>Shi, Feng</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121030</creationdate><title>A finite element variational multiscale method for incompressible flows based on the construction of the projection basis functions</title><author>Yu, Jiaping ; Zheng, Haibiao ; Shi, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3337-de3eef53de27ba755980ae6d58fdc0c2f00073e1cf0d7be508883ffc80265ee33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>basis functions</topic><topic>Computational methods in fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>incompressible flows</topic><topic>Physics</topic><topic>projection</topic><topic>variational multiscale (VMS) method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jiaping</creatorcontrib><creatorcontrib>Zheng, Haibiao</creatorcontrib><creatorcontrib>Shi, Feng</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Jiaping</au><au>Zheng, Haibiao</au><au>Shi, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A finite element variational multiscale method for incompressible flows based on the construction of the projection basis functions</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2012-10-30</date><risdate>2012</risdate><volume>70</volume><issue>6</issue><spage>793</spage><epage>804</epage><pages>793-804</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>SUMMARY
In this article, we present a finite element variational multiscale (VMS) method for incompressible flows based on the construction of projection basis functions and compare it with common VMS method, which is defined by a low‐order finite element space Lh on the same grid as Xh for the velocity deformation tensor and a stabilization parameter α. The best algorithmic feature of our method is to construct the projection basis functions at the element level with minimal additional cost to replace the global projection operator.
Finally, we give some numerical simulations of the nonlinear flow problems to show good stability and accuracy properties of the method. Copyright © 2011 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/fld.2717</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-2091 |
ispartof | International journal for numerical methods in fluids, 2012-10, Vol.70 (6), p.793-804 |
issn | 0271-2091 1097-0363 |
language | eng |
recordid | cdi_crossref_primary_10_1002_fld_2717 |
source | Wiley Online Library All Journals |
subjects | basis functions Computational methods in fluid dynamics Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) incompressible flows Physics projection variational multiscale (VMS) method |
title | A finite element variational multiscale method for incompressible flows based on the construction of the projection basis functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20finite%20element%20variational%20multiscale%20method%20for%20incompressible%20flows%20based%20on%20the%20construction%20of%20the%20projection%20basis%20functions&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Yu,%20Jiaping&rft.date=2012-10-30&rft.volume=70&rft.issue=6&rft.spage=793&rft.epage=804&rft.pages=793-804&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.2717&rft_dat=%3Cistex_cross%3Eark_67375_WNG_X8K65Z8C_S%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |