Vortex-in-cell method combined with a boundary element method for incompressible viscous flow analysis
SUMMARY In this study, an immersed boundary vortex‐in‐cell (VIC) method for simulating the incompressible flow external to two‐dimensional and three‐dimensional bodies is presented. The vorticity transport equation, which is the governing equation of the VIC method, is represented in a Lagrangian fo...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in fluids 2012-08, Vol.69 (10), p.1567-1583 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1583 |
---|---|
container_issue | 10 |
container_start_page | 1567 |
container_title | International journal for numerical methods in fluids |
container_volume | 69 |
creator | Kim, Yoo-Chul Suh, Jung-Chun Lee, Kyung-Jun |
description | SUMMARY
In this study, an immersed boundary vortex‐in‐cell (VIC) method for simulating the incompressible flow external to two‐dimensional and three‐dimensional bodies is presented. The vorticity transport equation, which is the governing equation of the VIC method, is represented in a Lagrangian form and solved by the vortex blob representation of the flow field. In the present scheme, the treatment of convection and diffusion is based on the classical fractional step algorithm. The rotational component of the velocity is obtained by solving Poisson's equation using an FFT method on a regular Cartesian grid, and the solenoidal component is determined from solving an integral equation using the panel method for the convection term, and the diffusion term is implemented by a particle strength exchange scheme. Both the no‐slip and no‐through flow conditions associated with the surface boundary condition are satisfied by diffusing vortex sheet and distributing singularities on the body, respectively. The present method is distinguished from other methods by the use of the panel method for the enforcement of the no‐through flow condition. The panel method completes making use of the immersed boundary nature inherent in the VIC method and can be also adopted for the calculation of the pressure field. The overall process is parallelized using message passing interface to manage the extensive computational load in the three‐dimensional flow simulations. Copyright © 2011 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/fld.2649 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_fld_2649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_535VBK8R_S</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3339-a221f52bd4c7df7d24c606d885b1958149d89f5220e637f85b0d59ddbce59e2b3</originalsourceid><addsrcrecordid>eNp10MtKAzEYhuEgCtYqeAnZCG6m5jCnLLXaKhYFD3UZMjnQaDopydTauzeltTtXgfDw8fMCcI7RACNEroxTA1Lm7AD0MGJVhmhJD0EPkQpnBDF8DE5i_EQIMVLTHjBTHzr9k9k2k9o5ONfdzCso_byxrVZwZbsZFLDxy1aJsIba6bluuz9nfIC2TXoRdIy2cRp-2yj9MkLj_AqKVrh1tPEUHBnhoj7bvX3wPrp7G95nk-fxw_B6kklKKcsEIdgUpFG5rJSpFMlliUpV10WDWVHjnKmaJUCQLmll0jdSBVOqkbpgmjS0Dy63uzL4GIM2fBHsPB3OMeKbPjz14Zs-iV5s6UJEKZwJopU27j0pMa4wwsllW7eyTq__3eOjye1ud-dtTGH3XoQvXla0KvjH05gXtJjePNYv_JX-Ai2phGI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vortex-in-cell method combined with a boundary element method for incompressible viscous flow analysis</title><source>Access via Wiley Online Library</source><creator>Kim, Yoo-Chul ; Suh, Jung-Chun ; Lee, Kyung-Jun</creator><creatorcontrib>Kim, Yoo-Chul ; Suh, Jung-Chun ; Lee, Kyung-Jun</creatorcontrib><description>SUMMARY
In this study, an immersed boundary vortex‐in‐cell (VIC) method for simulating the incompressible flow external to two‐dimensional and three‐dimensional bodies is presented. The vorticity transport equation, which is the governing equation of the VIC method, is represented in a Lagrangian form and solved by the vortex blob representation of the flow field. In the present scheme, the treatment of convection and diffusion is based on the classical fractional step algorithm. The rotational component of the velocity is obtained by solving Poisson's equation using an FFT method on a regular Cartesian grid, and the solenoidal component is determined from solving an integral equation using the panel method for the convection term, and the diffusion term is implemented by a particle strength exchange scheme. Both the no‐slip and no‐through flow conditions associated with the surface boundary condition are satisfied by diffusing vortex sheet and distributing singularities on the body, respectively. The present method is distinguished from other methods by the use of the panel method for the enforcement of the no‐through flow condition. The panel method completes making use of the immersed boundary nature inherent in the VIC method and can be also adopted for the calculation of the pressure field. The overall process is parallelized using message passing interface to manage the extensive computational load in the three‐dimensional flow simulations. Copyright © 2011 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.2649</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>bluff body ; boundary element method ; Computational methods in fluid dynamics ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; immersed boundary technique ; incompressible flow ; incompressible fluid ; marine hydrodynamics ; parallelization ; particle method ; Physics ; viscous flow ; Vortex-in-cell method</subject><ispartof>International journal for numerical methods in fluids, 2012-08, Vol.69 (10), p.1567-1583</ispartof><rights>Copyright © 2011 John Wiley & Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3339-a221f52bd4c7df7d24c606d885b1958149d89f5220e637f85b0d59ddbce59e2b3</citedby><cites>FETCH-LOGICAL-c3339-a221f52bd4c7df7d24c606d885b1958149d89f5220e637f85b0d59ddbce59e2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.2649$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.2649$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26117101$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Yoo-Chul</creatorcontrib><creatorcontrib>Suh, Jung-Chun</creatorcontrib><creatorcontrib>Lee, Kyung-Jun</creatorcontrib><title>Vortex-in-cell method combined with a boundary element method for incompressible viscous flow analysis</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>SUMMARY
In this study, an immersed boundary vortex‐in‐cell (VIC) method for simulating the incompressible flow external to two‐dimensional and three‐dimensional bodies is presented. The vorticity transport equation, which is the governing equation of the VIC method, is represented in a Lagrangian form and solved by the vortex blob representation of the flow field. In the present scheme, the treatment of convection and diffusion is based on the classical fractional step algorithm. The rotational component of the velocity is obtained by solving Poisson's equation using an FFT method on a regular Cartesian grid, and the solenoidal component is determined from solving an integral equation using the panel method for the convection term, and the diffusion term is implemented by a particle strength exchange scheme. Both the no‐slip and no‐through flow conditions associated with the surface boundary condition are satisfied by diffusing vortex sheet and distributing singularities on the body, respectively. The present method is distinguished from other methods by the use of the panel method for the enforcement of the no‐through flow condition. The panel method completes making use of the immersed boundary nature inherent in the VIC method and can be also adopted for the calculation of the pressure field. The overall process is parallelized using message passing interface to manage the extensive computational load in the three‐dimensional flow simulations. Copyright © 2011 John Wiley & Sons, Ltd.</description><subject>bluff body</subject><subject>boundary element method</subject><subject>Computational methods in fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>immersed boundary technique</subject><subject>incompressible flow</subject><subject>incompressible fluid</subject><subject>marine hydrodynamics</subject><subject>parallelization</subject><subject>particle method</subject><subject>Physics</subject><subject>viscous flow</subject><subject>Vortex-in-cell method</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp10MtKAzEYhuEgCtYqeAnZCG6m5jCnLLXaKhYFD3UZMjnQaDopydTauzeltTtXgfDw8fMCcI7RACNEroxTA1Lm7AD0MGJVhmhJD0EPkQpnBDF8DE5i_EQIMVLTHjBTHzr9k9k2k9o5ONfdzCso_byxrVZwZbsZFLDxy1aJsIba6bluuz9nfIC2TXoRdIy2cRp-2yj9MkLj_AqKVrh1tPEUHBnhoj7bvX3wPrp7G95nk-fxw_B6kklKKcsEIdgUpFG5rJSpFMlliUpV10WDWVHjnKmaJUCQLmll0jdSBVOqkbpgmjS0Dy63uzL4GIM2fBHsPB3OMeKbPjz14Zs-iV5s6UJEKZwJopU27j0pMa4wwsllW7eyTq__3eOjye1ud-dtTGH3XoQvXla0KvjH05gXtJjePNYv_JX-Ai2phGI</recordid><startdate>20120810</startdate><enddate>20120810</enddate><creator>Kim, Yoo-Chul</creator><creator>Suh, Jung-Chun</creator><creator>Lee, Kyung-Jun</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120810</creationdate><title>Vortex-in-cell method combined with a boundary element method for incompressible viscous flow analysis</title><author>Kim, Yoo-Chul ; Suh, Jung-Chun ; Lee, Kyung-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3339-a221f52bd4c7df7d24c606d885b1958149d89f5220e637f85b0d59ddbce59e2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>bluff body</topic><topic>boundary element method</topic><topic>Computational methods in fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>immersed boundary technique</topic><topic>incompressible flow</topic><topic>incompressible fluid</topic><topic>marine hydrodynamics</topic><topic>parallelization</topic><topic>particle method</topic><topic>Physics</topic><topic>viscous flow</topic><topic>Vortex-in-cell method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yoo-Chul</creatorcontrib><creatorcontrib>Suh, Jung-Chun</creatorcontrib><creatorcontrib>Lee, Kyung-Jun</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yoo-Chul</au><au>Suh, Jung-Chun</au><au>Lee, Kyung-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vortex-in-cell method combined with a boundary element method for incompressible viscous flow analysis</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2012-08-10</date><risdate>2012</risdate><volume>69</volume><issue>10</issue><spage>1567</spage><epage>1583</epage><pages>1567-1583</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>SUMMARY
In this study, an immersed boundary vortex‐in‐cell (VIC) method for simulating the incompressible flow external to two‐dimensional and three‐dimensional bodies is presented. The vorticity transport equation, which is the governing equation of the VIC method, is represented in a Lagrangian form and solved by the vortex blob representation of the flow field. In the present scheme, the treatment of convection and diffusion is based on the classical fractional step algorithm. The rotational component of the velocity is obtained by solving Poisson's equation using an FFT method on a regular Cartesian grid, and the solenoidal component is determined from solving an integral equation using the panel method for the convection term, and the diffusion term is implemented by a particle strength exchange scheme. Both the no‐slip and no‐through flow conditions associated with the surface boundary condition are satisfied by diffusing vortex sheet and distributing singularities on the body, respectively. The present method is distinguished from other methods by the use of the panel method for the enforcement of the no‐through flow condition. The panel method completes making use of the immersed boundary nature inherent in the VIC method and can be also adopted for the calculation of the pressure field. The overall process is parallelized using message passing interface to manage the extensive computational load in the three‐dimensional flow simulations. Copyright © 2011 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/fld.2649</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-2091 |
ispartof | International journal for numerical methods in fluids, 2012-08, Vol.69 (10), p.1567-1583 |
issn | 0271-2091 1097-0363 |
language | eng |
recordid | cdi_crossref_primary_10_1002_fld_2649 |
source | Access via Wiley Online Library |
subjects | bluff body boundary element method Computational methods in fluid dynamics Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) immersed boundary technique incompressible flow incompressible fluid marine hydrodynamics parallelization particle method Physics viscous flow Vortex-in-cell method |
title | Vortex-in-cell method combined with a boundary element method for incompressible viscous flow analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T23%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vortex-in-cell%20method%20combined%20with%20a%20boundary%20element%20method%20for%20incompressible%20viscous%20flow%20analysis&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Kim,%20Yoo-Chul&rft.date=2012-08-10&rft.volume=69&rft.issue=10&rft.spage=1567&rft.epage=1583&rft.pages=1567-1583&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.2649&rft_dat=%3Cistex_cross%3Eark_67375_WNG_535VBK8R_S%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |