Vortex-in-cell method combined with a boundary element method for incompressible viscous flow analysis

SUMMARY In this study, an immersed boundary vortex‐in‐cell (VIC) method for simulating the incompressible flow external to two‐dimensional and three‐dimensional bodies is presented. The vorticity transport equation, which is the governing equation of the VIC method, is represented in a Lagrangian fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in fluids 2012-08, Vol.69 (10), p.1567-1583
Hauptverfasser: Kim, Yoo-Chul, Suh, Jung-Chun, Lee, Kyung-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1583
container_issue 10
container_start_page 1567
container_title International journal for numerical methods in fluids
container_volume 69
creator Kim, Yoo-Chul
Suh, Jung-Chun
Lee, Kyung-Jun
description SUMMARY In this study, an immersed boundary vortex‐in‐cell (VIC) method for simulating the incompressible flow external to two‐dimensional and three‐dimensional bodies is presented. The vorticity transport equation, which is the governing equation of the VIC method, is represented in a Lagrangian form and solved by the vortex blob representation of the flow field. In the present scheme, the treatment of convection and diffusion is based on the classical fractional step algorithm. The rotational component of the velocity is obtained by solving Poisson's equation using an FFT method on a regular Cartesian grid, and the solenoidal component is determined from solving an integral equation using the panel method for the convection term, and the diffusion term is implemented by a particle strength exchange scheme. Both the no‐slip and no‐through flow conditions associated with the surface boundary condition are satisfied by diffusing vortex sheet and distributing singularities on the body, respectively. The present method is distinguished from other methods by the use of the panel method for the enforcement of the no‐through flow condition. The panel method completes making use of the immersed boundary nature inherent in the VIC method and can be also adopted for the calculation of the pressure field. The overall process is parallelized using message passing interface to manage the extensive computational load in the three‐dimensional flow simulations. Copyright © 2011 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/fld.2649
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_fld_2649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_535VBK8R_S</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3339-a221f52bd4c7df7d24c606d885b1958149d89f5220e637f85b0d59ddbce59e2b3</originalsourceid><addsrcrecordid>eNp10MtKAzEYhuEgCtYqeAnZCG6m5jCnLLXaKhYFD3UZMjnQaDopydTauzeltTtXgfDw8fMCcI7RACNEroxTA1Lm7AD0MGJVhmhJD0EPkQpnBDF8DE5i_EQIMVLTHjBTHzr9k9k2k9o5ONfdzCso_byxrVZwZbsZFLDxy1aJsIba6bluuz9nfIC2TXoRdIy2cRp-2yj9MkLj_AqKVrh1tPEUHBnhoj7bvX3wPrp7G95nk-fxw_B6kklKKcsEIdgUpFG5rJSpFMlliUpV10WDWVHjnKmaJUCQLmll0jdSBVOqkbpgmjS0Dy63uzL4GIM2fBHsPB3OMeKbPjz14Zs-iV5s6UJEKZwJopU27j0pMa4wwsllW7eyTq__3eOjye1ud-dtTGH3XoQvXla0KvjH05gXtJjePNYv_JX-Ai2phGI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vortex-in-cell method combined with a boundary element method for incompressible viscous flow analysis</title><source>Access via Wiley Online Library</source><creator>Kim, Yoo-Chul ; Suh, Jung-Chun ; Lee, Kyung-Jun</creator><creatorcontrib>Kim, Yoo-Chul ; Suh, Jung-Chun ; Lee, Kyung-Jun</creatorcontrib><description>SUMMARY In this study, an immersed boundary vortex‐in‐cell (VIC) method for simulating the incompressible flow external to two‐dimensional and three‐dimensional bodies is presented. The vorticity transport equation, which is the governing equation of the VIC method, is represented in a Lagrangian form and solved by the vortex blob representation of the flow field. In the present scheme, the treatment of convection and diffusion is based on the classical fractional step algorithm. The rotational component of the velocity is obtained by solving Poisson's equation using an FFT method on a regular Cartesian grid, and the solenoidal component is determined from solving an integral equation using the panel method for the convection term, and the diffusion term is implemented by a particle strength exchange scheme. Both the no‐slip and no‐through flow conditions associated with the surface boundary condition are satisfied by diffusing vortex sheet and distributing singularities on the body, respectively. The present method is distinguished from other methods by the use of the panel method for the enforcement of the no‐through flow condition. The panel method completes making use of the immersed boundary nature inherent in the VIC method and can be also adopted for the calculation of the pressure field. The overall process is parallelized using message passing interface to manage the extensive computational load in the three‐dimensional flow simulations. Copyright © 2011 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.2649</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>bluff body ; boundary element method ; Computational methods in fluid dynamics ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; immersed boundary technique ; incompressible flow ; incompressible fluid ; marine hydrodynamics ; parallelization ; particle method ; Physics ; viscous flow ; Vortex-in-cell method</subject><ispartof>International journal for numerical methods in fluids, 2012-08, Vol.69 (10), p.1567-1583</ispartof><rights>Copyright © 2011 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3339-a221f52bd4c7df7d24c606d885b1958149d89f5220e637f85b0d59ddbce59e2b3</citedby><cites>FETCH-LOGICAL-c3339-a221f52bd4c7df7d24c606d885b1958149d89f5220e637f85b0d59ddbce59e2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.2649$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.2649$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26117101$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Yoo-Chul</creatorcontrib><creatorcontrib>Suh, Jung-Chun</creatorcontrib><creatorcontrib>Lee, Kyung-Jun</creatorcontrib><title>Vortex-in-cell method combined with a boundary element method for incompressible viscous flow analysis</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>SUMMARY In this study, an immersed boundary vortex‐in‐cell (VIC) method for simulating the incompressible flow external to two‐dimensional and three‐dimensional bodies is presented. The vorticity transport equation, which is the governing equation of the VIC method, is represented in a Lagrangian form and solved by the vortex blob representation of the flow field. In the present scheme, the treatment of convection and diffusion is based on the classical fractional step algorithm. The rotational component of the velocity is obtained by solving Poisson's equation using an FFT method on a regular Cartesian grid, and the solenoidal component is determined from solving an integral equation using the panel method for the convection term, and the diffusion term is implemented by a particle strength exchange scheme. Both the no‐slip and no‐through flow conditions associated with the surface boundary condition are satisfied by diffusing vortex sheet and distributing singularities on the body, respectively. The present method is distinguished from other methods by the use of the panel method for the enforcement of the no‐through flow condition. The panel method completes making use of the immersed boundary nature inherent in the VIC method and can be also adopted for the calculation of the pressure field. The overall process is parallelized using message passing interface to manage the extensive computational load in the three‐dimensional flow simulations. Copyright © 2011 John Wiley &amp; Sons, Ltd.</description><subject>bluff body</subject><subject>boundary element method</subject><subject>Computational methods in fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>immersed boundary technique</subject><subject>incompressible flow</subject><subject>incompressible fluid</subject><subject>marine hydrodynamics</subject><subject>parallelization</subject><subject>particle method</subject><subject>Physics</subject><subject>viscous flow</subject><subject>Vortex-in-cell method</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp10MtKAzEYhuEgCtYqeAnZCG6m5jCnLLXaKhYFD3UZMjnQaDopydTauzeltTtXgfDw8fMCcI7RACNEroxTA1Lm7AD0MGJVhmhJD0EPkQpnBDF8DE5i_EQIMVLTHjBTHzr9k9k2k9o5ONfdzCso_byxrVZwZbsZFLDxy1aJsIba6bluuz9nfIC2TXoRdIy2cRp-2yj9MkLj_AqKVrh1tPEUHBnhoj7bvX3wPrp7G95nk-fxw_B6kklKKcsEIdgUpFG5rJSpFMlliUpV10WDWVHjnKmaJUCQLmll0jdSBVOqkbpgmjS0Dy63uzL4GIM2fBHsPB3OMeKbPjz14Zs-iV5s6UJEKZwJopU27j0pMa4wwsllW7eyTq__3eOjye1ud-dtTGH3XoQvXla0KvjH05gXtJjePNYv_JX-Ai2phGI</recordid><startdate>20120810</startdate><enddate>20120810</enddate><creator>Kim, Yoo-Chul</creator><creator>Suh, Jung-Chun</creator><creator>Lee, Kyung-Jun</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120810</creationdate><title>Vortex-in-cell method combined with a boundary element method for incompressible viscous flow analysis</title><author>Kim, Yoo-Chul ; Suh, Jung-Chun ; Lee, Kyung-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3339-a221f52bd4c7df7d24c606d885b1958149d89f5220e637f85b0d59ddbce59e2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>bluff body</topic><topic>boundary element method</topic><topic>Computational methods in fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>immersed boundary technique</topic><topic>incompressible flow</topic><topic>incompressible fluid</topic><topic>marine hydrodynamics</topic><topic>parallelization</topic><topic>particle method</topic><topic>Physics</topic><topic>viscous flow</topic><topic>Vortex-in-cell method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yoo-Chul</creatorcontrib><creatorcontrib>Suh, Jung-Chun</creatorcontrib><creatorcontrib>Lee, Kyung-Jun</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Yoo-Chul</au><au>Suh, Jung-Chun</au><au>Lee, Kyung-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vortex-in-cell method combined with a boundary element method for incompressible viscous flow analysis</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2012-08-10</date><risdate>2012</risdate><volume>69</volume><issue>10</issue><spage>1567</spage><epage>1583</epage><pages>1567-1583</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>SUMMARY In this study, an immersed boundary vortex‐in‐cell (VIC) method for simulating the incompressible flow external to two‐dimensional and three‐dimensional bodies is presented. The vorticity transport equation, which is the governing equation of the VIC method, is represented in a Lagrangian form and solved by the vortex blob representation of the flow field. In the present scheme, the treatment of convection and diffusion is based on the classical fractional step algorithm. The rotational component of the velocity is obtained by solving Poisson's equation using an FFT method on a regular Cartesian grid, and the solenoidal component is determined from solving an integral equation using the panel method for the convection term, and the diffusion term is implemented by a particle strength exchange scheme. Both the no‐slip and no‐through flow conditions associated with the surface boundary condition are satisfied by diffusing vortex sheet and distributing singularities on the body, respectively. The present method is distinguished from other methods by the use of the panel method for the enforcement of the no‐through flow condition. The panel method completes making use of the immersed boundary nature inherent in the VIC method and can be also adopted for the calculation of the pressure field. The overall process is parallelized using message passing interface to manage the extensive computational load in the three‐dimensional flow simulations. Copyright © 2011 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/fld.2649</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0271-2091
ispartof International journal for numerical methods in fluids, 2012-08, Vol.69 (10), p.1567-1583
issn 0271-2091
1097-0363
language eng
recordid cdi_crossref_primary_10_1002_fld_2649
source Access via Wiley Online Library
subjects bluff body
boundary element method
Computational methods in fluid dynamics
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
immersed boundary technique
incompressible flow
incompressible fluid
marine hydrodynamics
parallelization
particle method
Physics
viscous flow
Vortex-in-cell method
title Vortex-in-cell method combined with a boundary element method for incompressible viscous flow analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T23%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vortex-in-cell%20method%20combined%20with%20a%20boundary%20element%20method%20for%20incompressible%20viscous%20flow%20analysis&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Kim,%20Yoo-Chul&rft.date=2012-08-10&rft.volume=69&rft.issue=10&rft.spage=1567&rft.epage=1583&rft.pages=1567-1583&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.2649&rft_dat=%3Cistex_cross%3Eark_67375_WNG_535VBK8R_S%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true