Reordering and incomplete preconditioning in serial and parallel adaptive mesh refinement and coarsening flow solutions
SUMMARY The effects of reordering the unknowns on the convergence of incomplete factorization preconditioned Krylov subspace methods are investigated. Of particular interest is the resulting preconditioned iterative solver behavior when adaptive mesh refinement and coarsening (AMR/C) are utilized fo...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in fluids 2012-06, Vol.69 (4), p.802-823 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 823 |
---|---|
container_issue | 4 |
container_start_page | 802 |
container_title | International journal for numerical methods in fluids |
container_volume | 69 |
creator | Camata, J.J. Rossa, A.L. Valli, A.M.P. Catabriga, L. Carey, G.F. Coutinho, A.L.G.A. |
description | SUMMARY
The effects of reordering the unknowns on the convergence of incomplete factorization preconditioned Krylov subspace methods are investigated. Of particular interest is the resulting preconditioned iterative solver behavior when adaptive mesh refinement and coarsening (AMR/C) are utilized for serial or distributed parallel simulations. As representative schemes, we consider the familiar reverse Cuthill–McKee and quotient minimum degree algorithms applied with incomplete factorization preconditioners to CG and GMRES solvers. In the parallel distributed case, reordering is applied to local subdomains for block ILU preconditioning, and subdomains are repartitioned dynamically as mesh adaptation proceeds. Numerical studies for representative applications are conducted using the object‐oriented AMR/C software system libMesh linked to the PETSc solver library. Serial tests demonstrate that global unknown reordering and incomplete factorization preconditioning can reduce the number of iterations and improve serial CPU time in AMR/C computations. Parallel experiments indicate that local reordering for subdomain block preconditioning associated with dynamic repartitioning because of AMR/C leads to an overall reduction in processing time. Copyright © 2011 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/fld.2614 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_fld_2614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>FLD2614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3334-f2930ceffc32870e219d6e12830d034d10fa143a1fad17cb1101b0d97a587f4d3</originalsourceid><addsrcrecordid>eNp10MtKAzEUBuAgCtYL-AizEdxMPUlmms7SW1UoFW-4DDE50WiaGZLR2rd3pi3uXB3C-fJz-Ak5ojCkAOzUejNkI1pskQGFSuTAR3ybDIAJmjOo6C7ZS-kDACo25gOyeMA6GowuvGUqmMwFXc8bjy1mTURdB-NaV4d-7UKWOqj8CjYqKu-xexjVtO4bszmm9yyidQHnGNqV0rWKCVffra8XWar9V5-XDsiOVT7h4Wbuk-fJ1dPFTT69u769OJvmmnNe5JZVHDRaqzkbC0BGKzNC2p0OBnhhKFhFC66oVYYK_Uop0FcwlVDlWNjC8H1yss7VsU6pu0420c1VXEoKsi9MdoXJvrCOHq9po5JW3kYVtEt_npUVE0UpOpev3cJ5XP6bJyfTy03uxrvU4s-fV_FTjgQXpXyZXctSiPP7GX-UnP8CE_-Kug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reordering and incomplete preconditioning in serial and parallel adaptive mesh refinement and coarsening flow solutions</title><source>Access via Wiley Online Library</source><creator>Camata, J.J. ; Rossa, A.L. ; Valli, A.M.P. ; Catabriga, L. ; Carey, G.F. ; Coutinho, A.L.G.A.</creator><creatorcontrib>Camata, J.J. ; Rossa, A.L. ; Valli, A.M.P. ; Catabriga, L. ; Carey, G.F. ; Coutinho, A.L.G.A.</creatorcontrib><description>SUMMARY
The effects of reordering the unknowns on the convergence of incomplete factorization preconditioned Krylov subspace methods are investigated. Of particular interest is the resulting preconditioned iterative solver behavior when adaptive mesh refinement and coarsening (AMR/C) are utilized for serial or distributed parallel simulations. As representative schemes, we consider the familiar reverse Cuthill–McKee and quotient minimum degree algorithms applied with incomplete factorization preconditioners to CG and GMRES solvers. In the parallel distributed case, reordering is applied to local subdomains for block ILU preconditioning, and subdomains are repartitioned dynamically as mesh adaptation proceeds. Numerical studies for representative applications are conducted using the object‐oriented AMR/C software system libMesh linked to the PETSc solver library. Serial tests demonstrate that global unknown reordering and incomplete factorization preconditioning can reduce the number of iterations and improve serial CPU time in AMR/C computations. Parallel experiments indicate that local reordering for subdomain block preconditioning associated with dynamic repartitioning because of AMR/C leads to an overall reduction in processing time. Copyright © 2011 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.2614</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>adaptive mesh refinement ; Computational methods in fluid dynamics ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; ILU preconditioning ; Krylov subspace solvers ; parallel implementation ; Physics ; reordering</subject><ispartof>International journal for numerical methods in fluids, 2012-06, Vol.69 (4), p.802-823</ispartof><rights>Copyright © 2011 John Wiley & Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3334-f2930ceffc32870e219d6e12830d034d10fa143a1fad17cb1101b0d97a587f4d3</citedby><cites>FETCH-LOGICAL-c3334-f2930ceffc32870e219d6e12830d034d10fa143a1fad17cb1101b0d97a587f4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.2614$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.2614$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25927457$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Camata, J.J.</creatorcontrib><creatorcontrib>Rossa, A.L.</creatorcontrib><creatorcontrib>Valli, A.M.P.</creatorcontrib><creatorcontrib>Catabriga, L.</creatorcontrib><creatorcontrib>Carey, G.F.</creatorcontrib><creatorcontrib>Coutinho, A.L.G.A.</creatorcontrib><title>Reordering and incomplete preconditioning in serial and parallel adaptive mesh refinement and coarsening flow solutions</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>SUMMARY
The effects of reordering the unknowns on the convergence of incomplete factorization preconditioned Krylov subspace methods are investigated. Of particular interest is the resulting preconditioned iterative solver behavior when adaptive mesh refinement and coarsening (AMR/C) are utilized for serial or distributed parallel simulations. As representative schemes, we consider the familiar reverse Cuthill–McKee and quotient minimum degree algorithms applied with incomplete factorization preconditioners to CG and GMRES solvers. In the parallel distributed case, reordering is applied to local subdomains for block ILU preconditioning, and subdomains are repartitioned dynamically as mesh adaptation proceeds. Numerical studies for representative applications are conducted using the object‐oriented AMR/C software system libMesh linked to the PETSc solver library. Serial tests demonstrate that global unknown reordering and incomplete factorization preconditioning can reduce the number of iterations and improve serial CPU time in AMR/C computations. Parallel experiments indicate that local reordering for subdomain block preconditioning associated with dynamic repartitioning because of AMR/C leads to an overall reduction in processing time. Copyright © 2011 John Wiley & Sons, Ltd.</description><subject>adaptive mesh refinement</subject><subject>Computational methods in fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>ILU preconditioning</subject><subject>Krylov subspace solvers</subject><subject>parallel implementation</subject><subject>Physics</subject><subject>reordering</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp10MtKAzEUBuAgCtYL-AizEdxMPUlmms7SW1UoFW-4DDE50WiaGZLR2rd3pi3uXB3C-fJz-Ak5ojCkAOzUejNkI1pskQGFSuTAR3ybDIAJmjOo6C7ZS-kDACo25gOyeMA6GowuvGUqmMwFXc8bjy1mTURdB-NaV4d-7UKWOqj8CjYqKu-xexjVtO4bszmm9yyidQHnGNqV0rWKCVffra8XWar9V5-XDsiOVT7h4Wbuk-fJ1dPFTT69u769OJvmmnNe5JZVHDRaqzkbC0BGKzNC2p0OBnhhKFhFC66oVYYK_Uop0FcwlVDlWNjC8H1yss7VsU6pu0420c1VXEoKsi9MdoXJvrCOHq9po5JW3kYVtEt_npUVE0UpOpev3cJ5XP6bJyfTy03uxrvU4s-fV_FTjgQXpXyZXctSiPP7GX-UnP8CE_-Kug</recordid><startdate>20120610</startdate><enddate>20120610</enddate><creator>Camata, J.J.</creator><creator>Rossa, A.L.</creator><creator>Valli, A.M.P.</creator><creator>Catabriga, L.</creator><creator>Carey, G.F.</creator><creator>Coutinho, A.L.G.A.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120610</creationdate><title>Reordering and incomplete preconditioning in serial and parallel adaptive mesh refinement and coarsening flow solutions</title><author>Camata, J.J. ; Rossa, A.L. ; Valli, A.M.P. ; Catabriga, L. ; Carey, G.F. ; Coutinho, A.L.G.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3334-f2930ceffc32870e219d6e12830d034d10fa143a1fad17cb1101b0d97a587f4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>adaptive mesh refinement</topic><topic>Computational methods in fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>ILU preconditioning</topic><topic>Krylov subspace solvers</topic><topic>parallel implementation</topic><topic>Physics</topic><topic>reordering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camata, J.J.</creatorcontrib><creatorcontrib>Rossa, A.L.</creatorcontrib><creatorcontrib>Valli, A.M.P.</creatorcontrib><creatorcontrib>Catabriga, L.</creatorcontrib><creatorcontrib>Carey, G.F.</creatorcontrib><creatorcontrib>Coutinho, A.L.G.A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camata, J.J.</au><au>Rossa, A.L.</au><au>Valli, A.M.P.</au><au>Catabriga, L.</au><au>Carey, G.F.</au><au>Coutinho, A.L.G.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reordering and incomplete preconditioning in serial and parallel adaptive mesh refinement and coarsening flow solutions</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2012-06-10</date><risdate>2012</risdate><volume>69</volume><issue>4</issue><spage>802</spage><epage>823</epage><pages>802-823</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>SUMMARY
The effects of reordering the unknowns on the convergence of incomplete factorization preconditioned Krylov subspace methods are investigated. Of particular interest is the resulting preconditioned iterative solver behavior when adaptive mesh refinement and coarsening (AMR/C) are utilized for serial or distributed parallel simulations. As representative schemes, we consider the familiar reverse Cuthill–McKee and quotient minimum degree algorithms applied with incomplete factorization preconditioners to CG and GMRES solvers. In the parallel distributed case, reordering is applied to local subdomains for block ILU preconditioning, and subdomains are repartitioned dynamically as mesh adaptation proceeds. Numerical studies for representative applications are conducted using the object‐oriented AMR/C software system libMesh linked to the PETSc solver library. Serial tests demonstrate that global unknown reordering and incomplete factorization preconditioning can reduce the number of iterations and improve serial CPU time in AMR/C computations. Parallel experiments indicate that local reordering for subdomain block preconditioning associated with dynamic repartitioning because of AMR/C leads to an overall reduction in processing time. Copyright © 2011 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/fld.2614</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-2091 |
ispartof | International journal for numerical methods in fluids, 2012-06, Vol.69 (4), p.802-823 |
issn | 0271-2091 1097-0363 |
language | eng |
recordid | cdi_crossref_primary_10_1002_fld_2614 |
source | Access via Wiley Online Library |
subjects | adaptive mesh refinement Computational methods in fluid dynamics Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) ILU preconditioning Krylov subspace solvers parallel implementation Physics reordering |
title | Reordering and incomplete preconditioning in serial and parallel adaptive mesh refinement and coarsening flow solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T14%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reordering%20and%20incomplete%20preconditioning%20in%20serial%20and%20parallel%20adaptive%20mesh%20refinement%20and%20coarsening%20flow%20solutions&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Camata,%20J.J.&rft.date=2012-06-10&rft.volume=69&rft.issue=4&rft.spage=802&rft.epage=823&rft.pages=802-823&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.2614&rft_dat=%3Cwiley_cross%3EFLD2614%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |