IsoGeometric Analysis: Stable elements for the 2D Stokes equation

In this paper, we discuss the application of IsoGeometric Analysis to incompressible viscous flow problems. We consider, as a prototype problem, the Stokes system and we propose various choices of compatible spline spaces for the approximations to the velocity and the pressure fields. The proposed c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in fluids 2011-04, Vol.65 (11-12), p.1407-1422
Hauptverfasser: Buffa, A., de Falco, C., Sangalli, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1422
container_issue 11-12
container_start_page 1407
container_title International journal for numerical methods in fluids
container_volume 65
creator Buffa, A.
de Falco, C.
Sangalli, G.
description In this paper, we discuss the application of IsoGeometric Analysis to incompressible viscous flow problems. We consider, as a prototype problem, the Stokes system and we propose various choices of compatible spline spaces for the approximations to the velocity and the pressure fields. The proposed choices can be viewed as extensions of the Taylor–Hood, Nédélec and Raviart–Thomas pairs of finite element spaces, respectively. We study the stability and convergence properties of each method and discuss the conservation properties of the discrete velocity field in each case. Copyright © 2010 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/fld.2337
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_fld_2337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_12PS5XCD_X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3997-b5063356b9ac983aebb45378f617cbc6b834f20dcbafbf88fabb78e4a0739bc93</originalsourceid><addsrcrecordid>eNp1kMFOAjEQQBujiYgmfsJeTLwsth223XojIEhC1ASN3Jq2TOPKsovtGuXvXQLh5mkO8_Iybwi5ZrTHKOV3vlz2OIA8IR1GlUwpCDglHcolSzlV7JxcxPhJKVU8hw4ZTGM9wXqNTShcMqhMuY1FvE_mjbElJljiGqsmJr4OSfOBCR-1q3qFMcGvb9MUdXVJzrwpI14dZpe8jR9eh4_p7HkyHQ5mqQPV3mEzKgAyYZVxKgeD1vYzkLkXTDrrhM2h7zldOmu89XnujbUyx76hEpR1Crrkdu91oY4xoNebUKxN2GpG9S5dt-l6l96iN3t0Y6IzpQ-mckU88rxPhcjav3RJuud-ihK3__r0eDY6eA98ERv8PfImrLSQIDP9_jTRjL_Ms8VwpBfwB_vOdj0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>IsoGeometric Analysis: Stable elements for the 2D Stokes equation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Buffa, A. ; de Falco, C. ; Sangalli, G.</creator><creatorcontrib>Buffa, A. ; de Falco, C. ; Sangalli, G.</creatorcontrib><description>In this paper, we discuss the application of IsoGeometric Analysis to incompressible viscous flow problems. We consider, as a prototype problem, the Stokes system and we propose various choices of compatible spline spaces for the approximations to the velocity and the pressure fields. The proposed choices can be viewed as extensions of the Taylor–Hood, Nédélec and Raviart–Thomas pairs of finite element spaces, respectively. We study the stability and convergence properties of each method and discuss the conservation properties of the discrete velocity field in each case. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.2337</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Computational methods in fluid dynamics ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; incompressibility ; IsoGeometric Analysis ; Laminar flows ; Low-reynolds-number (creeping) flows ; NURBS ; Physics ; stability ; Stokes flow</subject><ispartof>International journal for numerical methods in fluids, 2011-04, Vol.65 (11-12), p.1407-1422</ispartof><rights>Copyright © 2010 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3997-b5063356b9ac983aebb45378f617cbc6b834f20dcbafbf88fabb78e4a0739bc93</citedby><cites>FETCH-LOGICAL-c3997-b5063356b9ac983aebb45378f617cbc6b834f20dcbafbf88fabb78e4a0739bc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.2337$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.2337$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,1411,23909,23910,25118,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24066536$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Buffa, A.</creatorcontrib><creatorcontrib>de Falco, C.</creatorcontrib><creatorcontrib>Sangalli, G.</creatorcontrib><title>IsoGeometric Analysis: Stable elements for the 2D Stokes equation</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>In this paper, we discuss the application of IsoGeometric Analysis to incompressible viscous flow problems. We consider, as a prototype problem, the Stokes system and we propose various choices of compatible spline spaces for the approximations to the velocity and the pressure fields. The proposed choices can be viewed as extensions of the Taylor–Hood, Nédélec and Raviart–Thomas pairs of finite element spaces, respectively. We study the stability and convergence properties of each method and discuss the conservation properties of the discrete velocity field in each case. Copyright © 2010 John Wiley &amp; Sons, Ltd.</description><subject>Computational methods in fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>incompressibility</subject><subject>IsoGeometric Analysis</subject><subject>Laminar flows</subject><subject>Low-reynolds-number (creeping) flows</subject><subject>NURBS</subject><subject>Physics</subject><subject>stability</subject><subject>Stokes flow</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOAjEQQBujiYgmfsJeTLwsth223XojIEhC1ASN3Jq2TOPKsovtGuXvXQLh5mkO8_Iybwi5ZrTHKOV3vlz2OIA8IR1GlUwpCDglHcolSzlV7JxcxPhJKVU8hw4ZTGM9wXqNTShcMqhMuY1FvE_mjbElJljiGqsmJr4OSfOBCR-1q3qFMcGvb9MUdXVJzrwpI14dZpe8jR9eh4_p7HkyHQ5mqQPV3mEzKgAyYZVxKgeD1vYzkLkXTDrrhM2h7zldOmu89XnujbUyx76hEpR1Crrkdu91oY4xoNebUKxN2GpG9S5dt-l6l96iN3t0Y6IzpQ-mckU88rxPhcjav3RJuud-ihK3__r0eDY6eA98ERv8PfImrLSQIDP9_jTRjL_Ms8VwpBfwB_vOdj0</recordid><startdate>20110430</startdate><enddate>20110430</enddate><creator>Buffa, A.</creator><creator>de Falco, C.</creator><creator>Sangalli, G.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110430</creationdate><title>IsoGeometric Analysis: Stable elements for the 2D Stokes equation</title><author>Buffa, A. ; de Falco, C. ; Sangalli, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3997-b5063356b9ac983aebb45378f617cbc6b834f20dcbafbf88fabb78e4a0739bc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computational methods in fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>incompressibility</topic><topic>IsoGeometric Analysis</topic><topic>Laminar flows</topic><topic>Low-reynolds-number (creeping) flows</topic><topic>NURBS</topic><topic>Physics</topic><topic>stability</topic><topic>Stokes flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buffa, A.</creatorcontrib><creatorcontrib>de Falco, C.</creatorcontrib><creatorcontrib>Sangalli, G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buffa, A.</au><au>de Falco, C.</au><au>Sangalli, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IsoGeometric Analysis: Stable elements for the 2D Stokes equation</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2011-04-30</date><risdate>2011</risdate><volume>65</volume><issue>11-12</issue><spage>1407</spage><epage>1422</epage><pages>1407-1422</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>In this paper, we discuss the application of IsoGeometric Analysis to incompressible viscous flow problems. We consider, as a prototype problem, the Stokes system and we propose various choices of compatible spline spaces for the approximations to the velocity and the pressure fields. The proposed choices can be viewed as extensions of the Taylor–Hood, Nédélec and Raviart–Thomas pairs of finite element spaces, respectively. We study the stability and convergence properties of each method and discuss the conservation properties of the discrete velocity field in each case. Copyright © 2010 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/fld.2337</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0271-2091
ispartof International journal for numerical methods in fluids, 2011-04, Vol.65 (11-12), p.1407-1422
issn 0271-2091
1097-0363
language eng
recordid cdi_crossref_primary_10_1002_fld_2337
source Wiley Online Library Journals Frontfile Complete
subjects Computational methods in fluid dynamics
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
incompressibility
IsoGeometric Analysis
Laminar flows
Low-reynolds-number (creeping) flows
NURBS
Physics
stability
Stokes flow
title IsoGeometric Analysis: Stable elements for the 2D Stokes equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A14%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IsoGeometric%20Analysis:%20Stable%20elements%20for%20the%202D%20Stokes%20equation&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Buffa,%20A.&rft.date=2011-04-30&rft.volume=65&rft.issue=11-12&rft.spage=1407&rft.epage=1422&rft.pages=1407-1422&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.2337&rft_dat=%3Cistex_cross%3Eark_67375_WNG_12PS5XCD_X%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true