IsoGeometric Analysis: Stable elements for the 2D Stokes equation
In this paper, we discuss the application of IsoGeometric Analysis to incompressible viscous flow problems. We consider, as a prototype problem, the Stokes system and we propose various choices of compatible spline spaces for the approximations to the velocity and the pressure fields. The proposed c...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in fluids 2011-04, Vol.65 (11-12), p.1407-1422 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1422 |
---|---|
container_issue | 11-12 |
container_start_page | 1407 |
container_title | International journal for numerical methods in fluids |
container_volume | 65 |
creator | Buffa, A. de Falco, C. Sangalli, G. |
description | In this paper, we discuss the application of IsoGeometric Analysis to incompressible viscous flow problems. We consider, as a prototype problem, the Stokes system and we propose various choices of compatible spline spaces for the approximations to the velocity and the pressure fields. The proposed choices can be viewed as extensions of the Taylor–Hood, Nédélec and Raviart–Thomas pairs of finite element spaces, respectively. We study the stability and convergence properties of each method and discuss the conservation properties of the discrete velocity field in each case. Copyright © 2010 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/fld.2337 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_fld_2337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_12PS5XCD_X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3997-b5063356b9ac983aebb45378f617cbc6b834f20dcbafbf88fabb78e4a0739bc93</originalsourceid><addsrcrecordid>eNp1kMFOAjEQQBujiYgmfsJeTLwsth223XojIEhC1ASN3Jq2TOPKsovtGuXvXQLh5mkO8_Iybwi5ZrTHKOV3vlz2OIA8IR1GlUwpCDglHcolSzlV7JxcxPhJKVU8hw4ZTGM9wXqNTShcMqhMuY1FvE_mjbElJljiGqsmJr4OSfOBCR-1q3qFMcGvb9MUdXVJzrwpI14dZpe8jR9eh4_p7HkyHQ5mqQPV3mEzKgAyYZVxKgeD1vYzkLkXTDrrhM2h7zldOmu89XnujbUyx76hEpR1Crrkdu91oY4xoNebUKxN2GpG9S5dt-l6l96iN3t0Y6IzpQ-mckU88rxPhcjav3RJuud-ihK3__r0eDY6eA98ERv8PfImrLSQIDP9_jTRjL_Ms8VwpBfwB_vOdj0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>IsoGeometric Analysis: Stable elements for the 2D Stokes equation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Buffa, A. ; de Falco, C. ; Sangalli, G.</creator><creatorcontrib>Buffa, A. ; de Falco, C. ; Sangalli, G.</creatorcontrib><description>In this paper, we discuss the application of IsoGeometric Analysis to incompressible viscous flow problems. We consider, as a prototype problem, the Stokes system and we propose various choices of compatible spline spaces for the approximations to the velocity and the pressure fields. The proposed choices can be viewed as extensions of the Taylor–Hood, Nédélec and Raviart–Thomas pairs of finite element spaces, respectively. We study the stability and convergence properties of each method and discuss the conservation properties of the discrete velocity field in each case. Copyright © 2010 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0271-2091</identifier><identifier>EISSN: 1097-0363</identifier><identifier>DOI: 10.1002/fld.2337</identifier><identifier>CODEN: IJNFDW</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Computational methods in fluid dynamics ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; incompressibility ; IsoGeometric Analysis ; Laminar flows ; Low-reynolds-number (creeping) flows ; NURBS ; Physics ; stability ; Stokes flow</subject><ispartof>International journal for numerical methods in fluids, 2011-04, Vol.65 (11-12), p.1407-1422</ispartof><rights>Copyright © 2010 John Wiley & Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3997-b5063356b9ac983aebb45378f617cbc6b834f20dcbafbf88fabb78e4a0739bc93</citedby><cites>FETCH-LOGICAL-c3997-b5063356b9ac983aebb45378f617cbc6b834f20dcbafbf88fabb78e4a0739bc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffld.2337$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffld.2337$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,1411,23909,23910,25118,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24066536$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Buffa, A.</creatorcontrib><creatorcontrib>de Falco, C.</creatorcontrib><creatorcontrib>Sangalli, G.</creatorcontrib><title>IsoGeometric Analysis: Stable elements for the 2D Stokes equation</title><title>International journal for numerical methods in fluids</title><addtitle>Int. J. Numer. Meth. Fluids</addtitle><description>In this paper, we discuss the application of IsoGeometric Analysis to incompressible viscous flow problems. We consider, as a prototype problem, the Stokes system and we propose various choices of compatible spline spaces for the approximations to the velocity and the pressure fields. The proposed choices can be viewed as extensions of the Taylor–Hood, Nédélec and Raviart–Thomas pairs of finite element spaces, respectively. We study the stability and convergence properties of each method and discuss the conservation properties of the discrete velocity field in each case. Copyright © 2010 John Wiley & Sons, Ltd.</description><subject>Computational methods in fluid dynamics</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>incompressibility</subject><subject>IsoGeometric Analysis</subject><subject>Laminar flows</subject><subject>Low-reynolds-number (creeping) flows</subject><subject>NURBS</subject><subject>Physics</subject><subject>stability</subject><subject>Stokes flow</subject><issn>0271-2091</issn><issn>1097-0363</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOAjEQQBujiYgmfsJeTLwsth223XojIEhC1ASN3Jq2TOPKsovtGuXvXQLh5mkO8_Iybwi5ZrTHKOV3vlz2OIA8IR1GlUwpCDglHcolSzlV7JxcxPhJKVU8hw4ZTGM9wXqNTShcMqhMuY1FvE_mjbElJljiGqsmJr4OSfOBCR-1q3qFMcGvb9MUdXVJzrwpI14dZpe8jR9eh4_p7HkyHQ5mqQPV3mEzKgAyYZVxKgeD1vYzkLkXTDrrhM2h7zldOmu89XnujbUyx76hEpR1Crrkdu91oY4xoNebUKxN2GpG9S5dt-l6l96iN3t0Y6IzpQ-mckU88rxPhcjav3RJuud-ihK3__r0eDY6eA98ERv8PfImrLSQIDP9_jTRjL_Ms8VwpBfwB_vOdj0</recordid><startdate>20110430</startdate><enddate>20110430</enddate><creator>Buffa, A.</creator><creator>de Falco, C.</creator><creator>Sangalli, G.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110430</creationdate><title>IsoGeometric Analysis: Stable elements for the 2D Stokes equation</title><author>Buffa, A. ; de Falco, C. ; Sangalli, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3997-b5063356b9ac983aebb45378f617cbc6b834f20dcbafbf88fabb78e4a0739bc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computational methods in fluid dynamics</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>incompressibility</topic><topic>IsoGeometric Analysis</topic><topic>Laminar flows</topic><topic>Low-reynolds-number (creeping) flows</topic><topic>NURBS</topic><topic>Physics</topic><topic>stability</topic><topic>Stokes flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buffa, A.</creatorcontrib><creatorcontrib>de Falco, C.</creatorcontrib><creatorcontrib>Sangalli, G.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>International journal for numerical methods in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buffa, A.</au><au>de Falco, C.</au><au>Sangalli, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IsoGeometric Analysis: Stable elements for the 2D Stokes equation</atitle><jtitle>International journal for numerical methods in fluids</jtitle><addtitle>Int. J. Numer. Meth. Fluids</addtitle><date>2011-04-30</date><risdate>2011</risdate><volume>65</volume><issue>11-12</issue><spage>1407</spage><epage>1422</epage><pages>1407-1422</pages><issn>0271-2091</issn><eissn>1097-0363</eissn><coden>IJNFDW</coden><abstract>In this paper, we discuss the application of IsoGeometric Analysis to incompressible viscous flow problems. We consider, as a prototype problem, the Stokes system and we propose various choices of compatible spline spaces for the approximations to the velocity and the pressure fields. The proposed choices can be viewed as extensions of the Taylor–Hood, Nédélec and Raviart–Thomas pairs of finite element spaces, respectively. We study the stability and convergence properties of each method and discuss the conservation properties of the discrete velocity field in each case. Copyright © 2010 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/fld.2337</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0271-2091 |
ispartof | International journal for numerical methods in fluids, 2011-04, Vol.65 (11-12), p.1407-1422 |
issn | 0271-2091 1097-0363 |
language | eng |
recordid | cdi_crossref_primary_10_1002_fld_2337 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Computational methods in fluid dynamics Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) incompressibility IsoGeometric Analysis Laminar flows Low-reynolds-number (creeping) flows NURBS Physics stability Stokes flow |
title | IsoGeometric Analysis: Stable elements for the 2D Stokes equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A14%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IsoGeometric%20Analysis:%20Stable%20elements%20for%20the%202D%20Stokes%20equation&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20fluids&rft.au=Buffa,%20A.&rft.date=2011-04-30&rft.volume=65&rft.issue=11-12&rft.spage=1407&rft.epage=1422&rft.pages=1407-1422&rft.issn=0271-2091&rft.eissn=1097-0363&rft.coden=IJNFDW&rft_id=info:doi/10.1002/fld.2337&rft_dat=%3Cistex_cross%3Eark_67375_WNG_12PS5XCD_X%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |