Nanofibers modified through carbon and nitrogen co‐doping and phase transformation for application in pseudocapacitors
Summary Nitrogen and carbon‐codoped titanium dioxide nanofibers (N,C‐TiNF) were prepared through a feasible and cost‐beneficial electrospinning procedure and introduced as active materials for electrodes in supercapacitors. The influence of nanofibers modification by nitrogen doping was demonstrated...
Gespeichert in:
Veröffentlicht in: | International journal of energy research 2021-02, Vol.45 (2), p.2343-2352 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2352 |
---|---|
container_issue | 2 |
container_start_page | 2343 |
container_title | International journal of energy research |
container_volume | 45 |
creator | Sabaghian, Fariba Mazloum‐Ardakani, Mohammad Yavari, Mozhgan Vajhadin, Fereshteh |
description | Summary
Nitrogen and carbon‐codoped titanium dioxide nanofibers (N,C‐TiNF) were prepared through a feasible and cost‐beneficial electrospinning procedure and introduced as active materials for electrodes in supercapacitors. The influence of nanofibers modification by nitrogen doping was demonstrated on the performance of supercapacitors. In addition, it was shown that the carbon originating from the fiber precursor could be doped on TiNF with no need for a carbon doping agent. The C‐doped TiNF (C,TiNF) was also compared with the N,C‐TiNF to explore the change in the behavior of supercapacitors. The specific capacitance of the prepared N,C‐TiNF electrode (102 F g−1) was found to be four times more than that of the C‐TiNF electrode (25 F g−1) in an Na2SO4 2 M solution. With nitrogen doping on the surface of the C,TiNF, the lattice anatase phase changed to rutile, and the distance between the (O‐2p) valence and conduction bands (Ti‐3d) reduced. As a result, the pseudocapacitance properties were enhanced. It is generally concluded that N, C‐TiNFs are excellent candidates to be applied in supercapacitors.
Nitrogen and carbon‐codoped titanium dioxide nanofibers (N,C‐TiNF) were prepared through a feasible and cost‐beneficial electrospinning procedure and introduced as active materials for electrodes in supercapacitors. The specific capacitance of the prepared N,C‐TiNF electrode (102 F g−1) was found to be four times more than that of the C‐TiNF electrode (25 F g‐1) in an Na2SO4 2 M solution. |
doi_str_mv | 10.1002/er.5929 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_er_5929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479652653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3229-a73f408f58ee9beb27926a63bd882b1e7f5c4a46c26cfee389707317c4955d963</originalsourceid><addsrcrecordid>eNqNkM9q3DAQxkVpoNtN6CsIesihONEfW7KOYUnaQkghJLA3I8ujXYVdyZFskr3lEfqMfZJq1yHkUuhpZpjfzPfxIfSFkjNKCDuHeFYppj6gGSVKFZSWy49oRrjghSJy-Ql9TumBkLyjcoaeb7QP1rUQE96GzlkHHR7WMYyrNTY6tsFj7Tvs3RDDCjw24c_L7y70zq8Oi36tE-Ahap9siFs9uHyRO6z7fuPMNDuP-wRjF4zutXFDiOkYHVm9SXDyWufo_urybvGjuP71_efi4rownDFVaMltSWpb1QCqhZZJxYQWvO3qmrUUpK1MqUthmDAWgNdKEsmpNKWqqk4JPkdfp799DI8jpKF5CGP0WbJhpVSiYqLimTqdKBNDShFs00e31XHXUNLsY20gNvtYM_ltIp-gDTYZB97AG51zrUR2VsvcEZrp-v_phRsOcS3C6Id3Qm4Du3_5aS5vD7b-Ai4DnB8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479652653</pqid></control><display><type>article</type><title>Nanofibers modified through carbon and nitrogen co‐doping and phase transformation for application in pseudocapacitors</title><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Wiley Online Library All Journals</source><creator>Sabaghian, Fariba ; Mazloum‐Ardakani, Mohammad ; Yavari, Mozhgan ; Vajhadin, Fereshteh</creator><creatorcontrib>Sabaghian, Fariba ; Mazloum‐Ardakani, Mohammad ; Yavari, Mozhgan ; Vajhadin, Fereshteh</creatorcontrib><description>Summary
Nitrogen and carbon‐codoped titanium dioxide nanofibers (N,C‐TiNF) were prepared through a feasible and cost‐beneficial electrospinning procedure and introduced as active materials for electrodes in supercapacitors. The influence of nanofibers modification by nitrogen doping was demonstrated on the performance of supercapacitors. In addition, it was shown that the carbon originating from the fiber precursor could be doped on TiNF with no need for a carbon doping agent. The C‐doped TiNF (C,TiNF) was also compared with the N,C‐TiNF to explore the change in the behavior of supercapacitors. The specific capacitance of the prepared N,C‐TiNF electrode (102 F g−1) was found to be four times more than that of the C‐TiNF electrode (25 F g−1) in an Na2SO4 2 M solution. With nitrogen doping on the surface of the C,TiNF, the lattice anatase phase changed to rutile, and the distance between the (O‐2p) valence and conduction bands (Ti‐3d) reduced. As a result, the pseudocapacitance properties were enhanced. It is generally concluded that N, C‐TiNFs are excellent candidates to be applied in supercapacitors.
Nitrogen and carbon‐codoped titanium dioxide nanofibers (N,C‐TiNF) were prepared through a feasible and cost‐beneficial electrospinning procedure and introduced as active materials for electrodes in supercapacitors. The specific capacitance of the prepared N,C‐TiNF electrode (102 F g−1) was found to be four times more than that of the C‐TiNF electrode (25 F g‐1) in an Na2SO4 2 M solution.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.5929</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Inc</publisher><subject>Anatase ; Capacitance ; Carbon ; carbon doping ; Conduction bands ; Doping ; Electrodes ; Energy & Fuels ; Nanofibers ; Nitrogen ; nitrogen doping ; Nuclear Science & Technology ; Phase transitions ; Rutile ; Science & Technology ; Sodium sulfate ; specific capacitance ; supercapacitor ; Supercapacitors ; Technology ; TiO2 nanofiber ; Titanium ; Titanium dioxide</subject><ispartof>International journal of energy research, 2021-02, Vol.45 (2), p.2343-2352</ispartof><rights>2020 John Wiley & Sons, Ltd</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000568828700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3229-a73f408f58ee9beb27926a63bd882b1e7f5c4a46c26cfee389707317c4955d963</citedby><cites>FETCH-LOGICAL-c3229-a73f408f58ee9beb27926a63bd882b1e7f5c4a46c26cfee389707317c4955d963</cites><orcidid>0000-0001-8077-0141 ; 0000-0003-2361-8981</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.5929$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.5929$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,39263,45579,45580</link.rule.ids></links><search><creatorcontrib>Sabaghian, Fariba</creatorcontrib><creatorcontrib>Mazloum‐Ardakani, Mohammad</creatorcontrib><creatorcontrib>Yavari, Mozhgan</creatorcontrib><creatorcontrib>Vajhadin, Fereshteh</creatorcontrib><title>Nanofibers modified through carbon and nitrogen co‐doping and phase transformation for application in pseudocapacitors</title><title>International journal of energy research</title><addtitle>INT J ENERG RES</addtitle><description>Summary
Nitrogen and carbon‐codoped titanium dioxide nanofibers (N,C‐TiNF) were prepared through a feasible and cost‐beneficial electrospinning procedure and introduced as active materials for electrodes in supercapacitors. The influence of nanofibers modification by nitrogen doping was demonstrated on the performance of supercapacitors. In addition, it was shown that the carbon originating from the fiber precursor could be doped on TiNF with no need for a carbon doping agent. The C‐doped TiNF (C,TiNF) was also compared with the N,C‐TiNF to explore the change in the behavior of supercapacitors. The specific capacitance of the prepared N,C‐TiNF electrode (102 F g−1) was found to be four times more than that of the C‐TiNF electrode (25 F g−1) in an Na2SO4 2 M solution. With nitrogen doping on the surface of the C,TiNF, the lattice anatase phase changed to rutile, and the distance between the (O‐2p) valence and conduction bands (Ti‐3d) reduced. As a result, the pseudocapacitance properties were enhanced. It is generally concluded that N, C‐TiNFs are excellent candidates to be applied in supercapacitors.
Nitrogen and carbon‐codoped titanium dioxide nanofibers (N,C‐TiNF) were prepared through a feasible and cost‐beneficial electrospinning procedure and introduced as active materials for electrodes in supercapacitors. The specific capacitance of the prepared N,C‐TiNF electrode (102 F g−1) was found to be four times more than that of the C‐TiNF electrode (25 F g‐1) in an Na2SO4 2 M solution.</description><subject>Anatase</subject><subject>Capacitance</subject><subject>Carbon</subject><subject>carbon doping</subject><subject>Conduction bands</subject><subject>Doping</subject><subject>Electrodes</subject><subject>Energy & Fuels</subject><subject>Nanofibers</subject><subject>Nitrogen</subject><subject>nitrogen doping</subject><subject>Nuclear Science & Technology</subject><subject>Phase transitions</subject><subject>Rutile</subject><subject>Science & Technology</subject><subject>Sodium sulfate</subject><subject>specific capacitance</subject><subject>supercapacitor</subject><subject>Supercapacitors</subject><subject>Technology</subject><subject>TiO2 nanofiber</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkM9q3DAQxkVpoNtN6CsIesihONEfW7KOYUnaQkghJLA3I8ujXYVdyZFskr3lEfqMfZJq1yHkUuhpZpjfzPfxIfSFkjNKCDuHeFYppj6gGSVKFZSWy49oRrjghSJy-Ql9TumBkLyjcoaeb7QP1rUQE96GzlkHHR7WMYyrNTY6tsFj7Tvs3RDDCjw24c_L7y70zq8Oi36tE-Ahap9siFs9uHyRO6z7fuPMNDuP-wRjF4zutXFDiOkYHVm9SXDyWufo_urybvGjuP71_efi4rownDFVaMltSWpb1QCqhZZJxYQWvO3qmrUUpK1MqUthmDAWgNdKEsmpNKWqqk4JPkdfp799DI8jpKF5CGP0WbJhpVSiYqLimTqdKBNDShFs00e31XHXUNLsY20gNvtYM_ltIp-gDTYZB97AG51zrUR2VsvcEZrp-v_phRsOcS3C6Id3Qm4Du3_5aS5vD7b-Ai4DnB8</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Sabaghian, Fariba</creator><creator>Mazloum‐Ardakani, Mohammad</creator><creator>Yavari, Mozhgan</creator><creator>Vajhadin, Fereshteh</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><general>Hindawi Limited</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8077-0141</orcidid><orcidid>https://orcid.org/0000-0003-2361-8981</orcidid></search><sort><creationdate>202102</creationdate><title>Nanofibers modified through carbon and nitrogen co‐doping and phase transformation for application in pseudocapacitors</title><author>Sabaghian, Fariba ; Mazloum‐Ardakani, Mohammad ; Yavari, Mozhgan ; Vajhadin, Fereshteh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3229-a73f408f58ee9beb27926a63bd882b1e7f5c4a46c26cfee389707317c4955d963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anatase</topic><topic>Capacitance</topic><topic>Carbon</topic><topic>carbon doping</topic><topic>Conduction bands</topic><topic>Doping</topic><topic>Electrodes</topic><topic>Energy & Fuels</topic><topic>Nanofibers</topic><topic>Nitrogen</topic><topic>nitrogen doping</topic><topic>Nuclear Science & Technology</topic><topic>Phase transitions</topic><topic>Rutile</topic><topic>Science & Technology</topic><topic>Sodium sulfate</topic><topic>specific capacitance</topic><topic>supercapacitor</topic><topic>Supercapacitors</topic><topic>Technology</topic><topic>TiO2 nanofiber</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabaghian, Fariba</creatorcontrib><creatorcontrib>Mazloum‐Ardakani, Mohammad</creatorcontrib><creatorcontrib>Yavari, Mozhgan</creatorcontrib><creatorcontrib>Vajhadin, Fereshteh</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabaghian, Fariba</au><au>Mazloum‐Ardakani, Mohammad</au><au>Yavari, Mozhgan</au><au>Vajhadin, Fereshteh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanofibers modified through carbon and nitrogen co‐doping and phase transformation for application in pseudocapacitors</atitle><jtitle>International journal of energy research</jtitle><stitle>INT J ENERG RES</stitle><date>2021-02</date><risdate>2021</risdate><volume>45</volume><issue>2</issue><spage>2343</spage><epage>2352</epage><pages>2343-2352</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary
Nitrogen and carbon‐codoped titanium dioxide nanofibers (N,C‐TiNF) were prepared through a feasible and cost‐beneficial electrospinning procedure and introduced as active materials for electrodes in supercapacitors. The influence of nanofibers modification by nitrogen doping was demonstrated on the performance of supercapacitors. In addition, it was shown that the carbon originating from the fiber precursor could be doped on TiNF with no need for a carbon doping agent. The C‐doped TiNF (C,TiNF) was also compared with the N,C‐TiNF to explore the change in the behavior of supercapacitors. The specific capacitance of the prepared N,C‐TiNF electrode (102 F g−1) was found to be four times more than that of the C‐TiNF electrode (25 F g−1) in an Na2SO4 2 M solution. With nitrogen doping on the surface of the C,TiNF, the lattice anatase phase changed to rutile, and the distance between the (O‐2p) valence and conduction bands (Ti‐3d) reduced. As a result, the pseudocapacitance properties were enhanced. It is generally concluded that N, C‐TiNFs are excellent candidates to be applied in supercapacitors.
Nitrogen and carbon‐codoped titanium dioxide nanofibers (N,C‐TiNF) were prepared through a feasible and cost‐beneficial electrospinning procedure and introduced as active materials for electrodes in supercapacitors. The specific capacitance of the prepared N,C‐TiNF electrode (102 F g−1) was found to be four times more than that of the C‐TiNF electrode (25 F g‐1) in an Na2SO4 2 M solution.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/er.5929</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8077-0141</orcidid><orcidid>https://orcid.org/0000-0003-2361-8981</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-907X |
ispartof | International journal of energy research, 2021-02, Vol.45 (2), p.2343-2352 |
issn | 0363-907X 1099-114X |
language | eng |
recordid | cdi_crossref_primary_10_1002_er_5929 |
source | Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Wiley Online Library All Journals |
subjects | Anatase Capacitance Carbon carbon doping Conduction bands Doping Electrodes Energy & Fuels Nanofibers Nitrogen nitrogen doping Nuclear Science & Technology Phase transitions Rutile Science & Technology Sodium sulfate specific capacitance supercapacitor Supercapacitors Technology TiO2 nanofiber Titanium Titanium dioxide |
title | Nanofibers modified through carbon and nitrogen co‐doping and phase transformation for application in pseudocapacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T14%3A11%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanofibers%20modified%20through%20carbon%20and%20nitrogen%20co%E2%80%90doping%20and%20phase%20transformation%20for%20application%20in%20pseudocapacitors&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Sabaghian,%20Fariba&rft.date=2021-02&rft.volume=45&rft.issue=2&rft.spage=2343&rft.epage=2352&rft.pages=2343-2352&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.5929&rft_dat=%3Cproquest_cross%3E2479652653%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479652653&rft_id=info:pmid/&rfr_iscdi=true |