Nanofibers modified through carbon and nitrogen co‐doping and phase transformation for application in pseudocapacitors

Summary Nitrogen and carbon‐codoped titanium dioxide nanofibers (N,C‐TiNF) were prepared through a feasible and cost‐beneficial electrospinning procedure and introduced as active materials for electrodes in supercapacitors. The influence of nanofibers modification by nitrogen doping was demonstrated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2021-02, Vol.45 (2), p.2343-2352
Hauptverfasser: Sabaghian, Fariba, Mazloum‐Ardakani, Mohammad, Yavari, Mozhgan, Vajhadin, Fereshteh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2352
container_issue 2
container_start_page 2343
container_title International journal of energy research
container_volume 45
creator Sabaghian, Fariba
Mazloum‐Ardakani, Mohammad
Yavari, Mozhgan
Vajhadin, Fereshteh
description Summary Nitrogen and carbon‐codoped titanium dioxide nanofibers (N,C‐TiNF) were prepared through a feasible and cost‐beneficial electrospinning procedure and introduced as active materials for electrodes in supercapacitors. The influence of nanofibers modification by nitrogen doping was demonstrated on the performance of supercapacitors. In addition, it was shown that the carbon originating from the fiber precursor could be doped on TiNF with no need for a carbon doping agent. The C‐doped TiNF (C,TiNF) was also compared with the N,C‐TiNF to explore the change in the behavior of supercapacitors. The specific capacitance of the prepared N,C‐TiNF electrode (102 F g−1) was found to be four times more than that of the C‐TiNF electrode (25 F g−1) in an Na2SO4 2 M solution. With nitrogen doping on the surface of the C,TiNF, the lattice anatase phase changed to rutile, and the distance between the (O‐2p) valence and conduction bands (Ti‐3d) reduced. As a result, the pseudocapacitance properties were enhanced. It is generally concluded that N, C‐TiNFs are excellent candidates to be applied in supercapacitors. Nitrogen and carbon‐codoped titanium dioxide nanofibers (N,C‐TiNF) were prepared through a feasible and cost‐beneficial electrospinning procedure and introduced as active materials for electrodes in supercapacitors. The specific capacitance of the prepared N,C‐TiNF electrode (102 F g−1) was found to be four times more than that of the C‐TiNF electrode (25 F g‐1) in an Na2SO4 2 M solution.
doi_str_mv 10.1002/er.5929
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_er_5929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479652653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3229-a73f408f58ee9beb27926a63bd882b1e7f5c4a46c26cfee389707317c4955d963</originalsourceid><addsrcrecordid>eNqNkM9q3DAQxkVpoNtN6CsIesihONEfW7KOYUnaQkghJLA3I8ujXYVdyZFskr3lEfqMfZJq1yHkUuhpZpjfzPfxIfSFkjNKCDuHeFYppj6gGSVKFZSWy49oRrjghSJy-Ql9TumBkLyjcoaeb7QP1rUQE96GzlkHHR7WMYyrNTY6tsFj7Tvs3RDDCjw24c_L7y70zq8Oi36tE-Ahap9siFs9uHyRO6z7fuPMNDuP-wRjF4zutXFDiOkYHVm9SXDyWufo_urybvGjuP71_efi4rownDFVaMltSWpb1QCqhZZJxYQWvO3qmrUUpK1MqUthmDAWgNdKEsmpNKWqqk4JPkdfp799DI8jpKF5CGP0WbJhpVSiYqLimTqdKBNDShFs00e31XHXUNLsY20gNvtYM_ltIp-gDTYZB97AG51zrUR2VsvcEZrp-v_phRsOcS3C6Id3Qm4Du3_5aS5vD7b-Ai4DnB8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479652653</pqid></control><display><type>article</type><title>Nanofibers modified through carbon and nitrogen co‐doping and phase transformation for application in pseudocapacitors</title><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Wiley Online Library All Journals</source><creator>Sabaghian, Fariba ; Mazloum‐Ardakani, Mohammad ; Yavari, Mozhgan ; Vajhadin, Fereshteh</creator><creatorcontrib>Sabaghian, Fariba ; Mazloum‐Ardakani, Mohammad ; Yavari, Mozhgan ; Vajhadin, Fereshteh</creatorcontrib><description>Summary Nitrogen and carbon‐codoped titanium dioxide nanofibers (N,C‐TiNF) were prepared through a feasible and cost‐beneficial electrospinning procedure and introduced as active materials for electrodes in supercapacitors. The influence of nanofibers modification by nitrogen doping was demonstrated on the performance of supercapacitors. In addition, it was shown that the carbon originating from the fiber precursor could be doped on TiNF with no need for a carbon doping agent. The C‐doped TiNF (C,TiNF) was also compared with the N,C‐TiNF to explore the change in the behavior of supercapacitors. The specific capacitance of the prepared N,C‐TiNF electrode (102 F g−1) was found to be four times more than that of the C‐TiNF electrode (25 F g−1) in an Na2SO4 2 M solution. With nitrogen doping on the surface of the C,TiNF, the lattice anatase phase changed to rutile, and the distance between the (O‐2p) valence and conduction bands (Ti‐3d) reduced. As a result, the pseudocapacitance properties were enhanced. It is generally concluded that N, C‐TiNFs are excellent candidates to be applied in supercapacitors. Nitrogen and carbon‐codoped titanium dioxide nanofibers (N,C‐TiNF) were prepared through a feasible and cost‐beneficial electrospinning procedure and introduced as active materials for electrodes in supercapacitors. The specific capacitance of the prepared N,C‐TiNF electrode (102 F g−1) was found to be four times more than that of the C‐TiNF electrode (25 F g‐1) in an Na2SO4 2 M solution.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.5929</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>Anatase ; Capacitance ; Carbon ; carbon doping ; Conduction bands ; Doping ; Electrodes ; Energy &amp; Fuels ; Nanofibers ; Nitrogen ; nitrogen doping ; Nuclear Science &amp; Technology ; Phase transitions ; Rutile ; Science &amp; Technology ; Sodium sulfate ; specific capacitance ; supercapacitor ; Supercapacitors ; Technology ; TiO2 nanofiber ; Titanium ; Titanium dioxide</subject><ispartof>International journal of energy research, 2021-02, Vol.45 (2), p.2343-2352</ispartof><rights>2020 John Wiley &amp; Sons, Ltd</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000568828700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3229-a73f408f58ee9beb27926a63bd882b1e7f5c4a46c26cfee389707317c4955d963</citedby><cites>FETCH-LOGICAL-c3229-a73f408f58ee9beb27926a63bd882b1e7f5c4a46c26cfee389707317c4955d963</cites><orcidid>0000-0001-8077-0141 ; 0000-0003-2361-8981</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.5929$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.5929$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,39263,45579,45580</link.rule.ids></links><search><creatorcontrib>Sabaghian, Fariba</creatorcontrib><creatorcontrib>Mazloum‐Ardakani, Mohammad</creatorcontrib><creatorcontrib>Yavari, Mozhgan</creatorcontrib><creatorcontrib>Vajhadin, Fereshteh</creatorcontrib><title>Nanofibers modified through carbon and nitrogen co‐doping and phase transformation for application in pseudocapacitors</title><title>International journal of energy research</title><addtitle>INT J ENERG RES</addtitle><description>Summary Nitrogen and carbon‐codoped titanium dioxide nanofibers (N,C‐TiNF) were prepared through a feasible and cost‐beneficial electrospinning procedure and introduced as active materials for electrodes in supercapacitors. The influence of nanofibers modification by nitrogen doping was demonstrated on the performance of supercapacitors. In addition, it was shown that the carbon originating from the fiber precursor could be doped on TiNF with no need for a carbon doping agent. The C‐doped TiNF (C,TiNF) was also compared with the N,C‐TiNF to explore the change in the behavior of supercapacitors. The specific capacitance of the prepared N,C‐TiNF electrode (102 F g−1) was found to be four times more than that of the C‐TiNF electrode (25 F g−1) in an Na2SO4 2 M solution. With nitrogen doping on the surface of the C,TiNF, the lattice anatase phase changed to rutile, and the distance between the (O‐2p) valence and conduction bands (Ti‐3d) reduced. As a result, the pseudocapacitance properties were enhanced. It is generally concluded that N, C‐TiNFs are excellent candidates to be applied in supercapacitors. Nitrogen and carbon‐codoped titanium dioxide nanofibers (N,C‐TiNF) were prepared through a feasible and cost‐beneficial electrospinning procedure and introduced as active materials for electrodes in supercapacitors. The specific capacitance of the prepared N,C‐TiNF electrode (102 F g−1) was found to be four times more than that of the C‐TiNF electrode (25 F g‐1) in an Na2SO4 2 M solution.</description><subject>Anatase</subject><subject>Capacitance</subject><subject>Carbon</subject><subject>carbon doping</subject><subject>Conduction bands</subject><subject>Doping</subject><subject>Electrodes</subject><subject>Energy &amp; Fuels</subject><subject>Nanofibers</subject><subject>Nitrogen</subject><subject>nitrogen doping</subject><subject>Nuclear Science &amp; Technology</subject><subject>Phase transitions</subject><subject>Rutile</subject><subject>Science &amp; Technology</subject><subject>Sodium sulfate</subject><subject>specific capacitance</subject><subject>supercapacitor</subject><subject>Supercapacitors</subject><subject>Technology</subject><subject>TiO2 nanofiber</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkM9q3DAQxkVpoNtN6CsIesihONEfW7KOYUnaQkghJLA3I8ujXYVdyZFskr3lEfqMfZJq1yHkUuhpZpjfzPfxIfSFkjNKCDuHeFYppj6gGSVKFZSWy49oRrjghSJy-Ql9TumBkLyjcoaeb7QP1rUQE96GzlkHHR7WMYyrNTY6tsFj7Tvs3RDDCjw24c_L7y70zq8Oi36tE-Ahap9siFs9uHyRO6z7fuPMNDuP-wRjF4zutXFDiOkYHVm9SXDyWufo_urybvGjuP71_efi4rownDFVaMltSWpb1QCqhZZJxYQWvO3qmrUUpK1MqUthmDAWgNdKEsmpNKWqqk4JPkdfp799DI8jpKF5CGP0WbJhpVSiYqLimTqdKBNDShFs00e31XHXUNLsY20gNvtYM_ltIp-gDTYZB97AG51zrUR2VsvcEZrp-v_phRsOcS3C6Id3Qm4Du3_5aS5vD7b-Ai4DnB8</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Sabaghian, Fariba</creator><creator>Mazloum‐Ardakani, Mohammad</creator><creator>Yavari, Mozhgan</creator><creator>Vajhadin, Fereshteh</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><general>Hindawi Limited</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8077-0141</orcidid><orcidid>https://orcid.org/0000-0003-2361-8981</orcidid></search><sort><creationdate>202102</creationdate><title>Nanofibers modified through carbon and nitrogen co‐doping and phase transformation for application in pseudocapacitors</title><author>Sabaghian, Fariba ; Mazloum‐Ardakani, Mohammad ; Yavari, Mozhgan ; Vajhadin, Fereshteh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3229-a73f408f58ee9beb27926a63bd882b1e7f5c4a46c26cfee389707317c4955d963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anatase</topic><topic>Capacitance</topic><topic>Carbon</topic><topic>carbon doping</topic><topic>Conduction bands</topic><topic>Doping</topic><topic>Electrodes</topic><topic>Energy &amp; Fuels</topic><topic>Nanofibers</topic><topic>Nitrogen</topic><topic>nitrogen doping</topic><topic>Nuclear Science &amp; Technology</topic><topic>Phase transitions</topic><topic>Rutile</topic><topic>Science &amp; Technology</topic><topic>Sodium sulfate</topic><topic>specific capacitance</topic><topic>supercapacitor</topic><topic>Supercapacitors</topic><topic>Technology</topic><topic>TiO2 nanofiber</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabaghian, Fariba</creatorcontrib><creatorcontrib>Mazloum‐Ardakani, Mohammad</creatorcontrib><creatorcontrib>Yavari, Mozhgan</creatorcontrib><creatorcontrib>Vajhadin, Fereshteh</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabaghian, Fariba</au><au>Mazloum‐Ardakani, Mohammad</au><au>Yavari, Mozhgan</au><au>Vajhadin, Fereshteh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanofibers modified through carbon and nitrogen co‐doping and phase transformation for application in pseudocapacitors</atitle><jtitle>International journal of energy research</jtitle><stitle>INT J ENERG RES</stitle><date>2021-02</date><risdate>2021</risdate><volume>45</volume><issue>2</issue><spage>2343</spage><epage>2352</epage><pages>2343-2352</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary Nitrogen and carbon‐codoped titanium dioxide nanofibers (N,C‐TiNF) were prepared through a feasible and cost‐beneficial electrospinning procedure and introduced as active materials for electrodes in supercapacitors. The influence of nanofibers modification by nitrogen doping was demonstrated on the performance of supercapacitors. In addition, it was shown that the carbon originating from the fiber precursor could be doped on TiNF with no need for a carbon doping agent. The C‐doped TiNF (C,TiNF) was also compared with the N,C‐TiNF to explore the change in the behavior of supercapacitors. The specific capacitance of the prepared N,C‐TiNF electrode (102 F g−1) was found to be four times more than that of the C‐TiNF electrode (25 F g−1) in an Na2SO4 2 M solution. With nitrogen doping on the surface of the C,TiNF, the lattice anatase phase changed to rutile, and the distance between the (O‐2p) valence and conduction bands (Ti‐3d) reduced. As a result, the pseudocapacitance properties were enhanced. It is generally concluded that N, C‐TiNFs are excellent candidates to be applied in supercapacitors. Nitrogen and carbon‐codoped titanium dioxide nanofibers (N,C‐TiNF) were prepared through a feasible and cost‐beneficial electrospinning procedure and introduced as active materials for electrodes in supercapacitors. The specific capacitance of the prepared N,C‐TiNF electrode (102 F g−1) was found to be four times more than that of the C‐TiNF electrode (25 F g‐1) in an Na2SO4 2 M solution.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/er.5929</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8077-0141</orcidid><orcidid>https://orcid.org/0000-0003-2361-8981</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2021-02, Vol.45 (2), p.2343-2352
issn 0363-907X
1099-114X
language eng
recordid cdi_crossref_primary_10_1002_er_5929
source Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Wiley Online Library All Journals
subjects Anatase
Capacitance
Carbon
carbon doping
Conduction bands
Doping
Electrodes
Energy & Fuels
Nanofibers
Nitrogen
nitrogen doping
Nuclear Science & Technology
Phase transitions
Rutile
Science & Technology
Sodium sulfate
specific capacitance
supercapacitor
Supercapacitors
Technology
TiO2 nanofiber
Titanium
Titanium dioxide
title Nanofibers modified through carbon and nitrogen co‐doping and phase transformation for application in pseudocapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T14%3A11%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanofibers%20modified%20through%20carbon%20and%20nitrogen%20co%E2%80%90doping%20and%20phase%20transformation%20for%20application%20in%20pseudocapacitors&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Sabaghian,%20Fariba&rft.date=2021-02&rft.volume=45&rft.issue=2&rft.spage=2343&rft.epage=2352&rft.pages=2343-2352&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.5929&rft_dat=%3Cproquest_cross%3E2479652653%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479652653&rft_id=info:pmid/&rfr_iscdi=true