Amorphous carbon intercalated MoS 2 nanosheets embedded on reduced graphene oxide for excellent high‐rate and ultralong cycling sodium storage

MoS 2 as a typical layered transition metal dichalcogenide (LTMD) has attracted considerable attention to work as sodium host materials for sodium‐ion batteries (SIBs). However, it suffers from low semiconducting behavior and high Na + diffusion barriers. Herein, intercalation of N‐doped amorphous c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EcoMat (Beijing, China) China), 2024-08, Vol.6 (8)
Hauptverfasser: Xu, Jun, Jiang, Junbao, Cao, Shoufu, Li, Suwan, Ma, Yuanming, Chen, Junwei, Zhang, Yan, Lu, Xiaoqing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title EcoMat (Beijing, China)
container_volume 6
creator Xu, Jun
Jiang, Junbao
Cao, Shoufu
Li, Suwan
Ma, Yuanming
Chen, Junwei
Zhang, Yan
Lu, Xiaoqing
description MoS 2 as a typical layered transition metal dichalcogenide (LTMD) has attracted considerable attention to work as sodium host materials for sodium‐ion batteries (SIBs). However, it suffers from low semiconducting behavior and high Na + diffusion barriers. Herein, intercalation of N‐doped amorphous carbon (NAC) into each interlayer of the tiny MoS 2 nanosheets embedded on rGO conductive network is achieved, resulting in formation of rGO@MoS 2 /NAC hierarchy with interoverlapped MoS 2 /NAC superlattices for high‐performance SIBs. Attributed to intercalation of NAC, the resulting MoS 2 /NAC superlattices with wide MoS 2 interlayer of 1.02 nm facilitates rapid Na + insertion/extraction and accelerates reaction kinetics. Theoretical calculations uncover that the MoS 2 /NAC superlattices are beneficial for enhanced electron transport, decreased Na + diffusion barrier and improved Na + adsorption energy. The rGO@MoS 2 /NAC anode presents significantly improved high‐rate capabilities of 228, 207, and 166 mAh g −1 at 20, 30, and 50 A g −1 , respectively, compared with two control samples of pristine MoS 2 and MoS 2 /NAC counterparts. Excellent long‐term cyclability over 10 000 cycles with extremely low capacity decay is demonstrated at high current densities of 20 and 50 A g −1 . Sodium‐ion full cells based on the rGO@MoS 2 /NAC anode are also demonstrated, yielding decent cycling stability of 200 cycles at 5C. Our work provides a novel interlayer strategy to regulate electron/Na + transport for fast‐charging SIBs. image
doi_str_mv 10.1002/eom2.12479
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_eom2_12479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_eom2_12479</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_eom2_124793</originalsourceid><addsrcrecordid>eNqVj8FKAzEURYMoWLQbv-CthdYkM3VwKaK4caX7IU3ezEQyecNLBtqdn9Bv9EtMxYXbru6Fe7hwhLhRcq2k1HdIo14rXTcPZ2KhN_fNqlJNdf6vX4plSp-ywBtZ61otxOFxJJ4GmhNYw1uK4GNGtiaYjA7e6B00RBMpDYg5AY5bdK4shWR0sy21ZzMNGBFo5x1CRwy4sxgCxgyD74fvrwOXOzDRwRwym0CxB7u3wZdM5Pw8QsrEpsdrcdGZkHD5l1fi9uX54-l1ZZlSYuzaif1oeN8q2R6126N2-6tdnQT_ALPmYsY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Amorphous carbon intercalated MoS 2 nanosheets embedded on reduced graphene oxide for excellent high‐rate and ultralong cycling sodium storage</title><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley-Blackwell Open Access Titles</source><creator>Xu, Jun ; Jiang, Junbao ; Cao, Shoufu ; Li, Suwan ; Ma, Yuanming ; Chen, Junwei ; Zhang, Yan ; Lu, Xiaoqing</creator><creatorcontrib>Xu, Jun ; Jiang, Junbao ; Cao, Shoufu ; Li, Suwan ; Ma, Yuanming ; Chen, Junwei ; Zhang, Yan ; Lu, Xiaoqing</creatorcontrib><description>MoS 2 as a typical layered transition metal dichalcogenide (LTMD) has attracted considerable attention to work as sodium host materials for sodium‐ion batteries (SIBs). However, it suffers from low semiconducting behavior and high Na + diffusion barriers. Herein, intercalation of N‐doped amorphous carbon (NAC) into each interlayer of the tiny MoS 2 nanosheets embedded on rGO conductive network is achieved, resulting in formation of rGO@MoS 2 /NAC hierarchy with interoverlapped MoS 2 /NAC superlattices for high‐performance SIBs. Attributed to intercalation of NAC, the resulting MoS 2 /NAC superlattices with wide MoS 2 interlayer of 1.02 nm facilitates rapid Na + insertion/extraction and accelerates reaction kinetics. Theoretical calculations uncover that the MoS 2 /NAC superlattices are beneficial for enhanced electron transport, decreased Na + diffusion barrier and improved Na + adsorption energy. The rGO@MoS 2 /NAC anode presents significantly improved high‐rate capabilities of 228, 207, and 166 mAh g −1 at 20, 30, and 50 A g −1 , respectively, compared with two control samples of pristine MoS 2 and MoS 2 /NAC counterparts. Excellent long‐term cyclability over 10 000 cycles with extremely low capacity decay is demonstrated at high current densities of 20 and 50 A g −1 . Sodium‐ion full cells based on the rGO@MoS 2 /NAC anode are also demonstrated, yielding decent cycling stability of 200 cycles at 5C. Our work provides a novel interlayer strategy to regulate electron/Na + transport for fast‐charging SIBs. image</description><identifier>ISSN: 2567-3173</identifier><identifier>EISSN: 2567-3173</identifier><identifier>DOI: 10.1002/eom2.12479</identifier><language>eng</language><ispartof>EcoMat (Beijing, China), 2024-08, Vol.6 (8)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1002_eom2_124793</cites><orcidid>0000-0001-9829-4382</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,27911,27912</link.rule.ids></links><search><creatorcontrib>Xu, Jun</creatorcontrib><creatorcontrib>Jiang, Junbao</creatorcontrib><creatorcontrib>Cao, Shoufu</creatorcontrib><creatorcontrib>Li, Suwan</creatorcontrib><creatorcontrib>Ma, Yuanming</creatorcontrib><creatorcontrib>Chen, Junwei</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Lu, Xiaoqing</creatorcontrib><title>Amorphous carbon intercalated MoS 2 nanosheets embedded on reduced graphene oxide for excellent high‐rate and ultralong cycling sodium storage</title><title>EcoMat (Beijing, China)</title><description>MoS 2 as a typical layered transition metal dichalcogenide (LTMD) has attracted considerable attention to work as sodium host materials for sodium‐ion batteries (SIBs). However, it suffers from low semiconducting behavior and high Na + diffusion barriers. Herein, intercalation of N‐doped amorphous carbon (NAC) into each interlayer of the tiny MoS 2 nanosheets embedded on rGO conductive network is achieved, resulting in formation of rGO@MoS 2 /NAC hierarchy with interoverlapped MoS 2 /NAC superlattices for high‐performance SIBs. Attributed to intercalation of NAC, the resulting MoS 2 /NAC superlattices with wide MoS 2 interlayer of 1.02 nm facilitates rapid Na + insertion/extraction and accelerates reaction kinetics. Theoretical calculations uncover that the MoS 2 /NAC superlattices are beneficial for enhanced electron transport, decreased Na + diffusion barrier and improved Na + adsorption energy. The rGO@MoS 2 /NAC anode presents significantly improved high‐rate capabilities of 228, 207, and 166 mAh g −1 at 20, 30, and 50 A g −1 , respectively, compared with two control samples of pristine MoS 2 and MoS 2 /NAC counterparts. Excellent long‐term cyclability over 10 000 cycles with extremely low capacity decay is demonstrated at high current densities of 20 and 50 A g −1 . Sodium‐ion full cells based on the rGO@MoS 2 /NAC anode are also demonstrated, yielding decent cycling stability of 200 cycles at 5C. Our work provides a novel interlayer strategy to regulate electron/Na + transport for fast‐charging SIBs. image</description><issn>2567-3173</issn><issn>2567-3173</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVj8FKAzEURYMoWLQbv-CthdYkM3VwKaK4caX7IU3ezEQyecNLBtqdn9Bv9EtMxYXbru6Fe7hwhLhRcq2k1HdIo14rXTcPZ2KhN_fNqlJNdf6vX4plSp-ywBtZ61otxOFxJJ4GmhNYw1uK4GNGtiaYjA7e6B00RBMpDYg5AY5bdK4shWR0sy21ZzMNGBFo5x1CRwy4sxgCxgyD74fvrwOXOzDRwRwym0CxB7u3wZdM5Pw8QsrEpsdrcdGZkHD5l1fi9uX54-l1ZZlSYuzaif1oeN8q2R6126N2-6tdnQT_ALPmYsY</recordid><startdate>202408</startdate><enddate>202408</enddate><creator>Xu, Jun</creator><creator>Jiang, Junbao</creator><creator>Cao, Shoufu</creator><creator>Li, Suwan</creator><creator>Ma, Yuanming</creator><creator>Chen, Junwei</creator><creator>Zhang, Yan</creator><creator>Lu, Xiaoqing</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9829-4382</orcidid></search><sort><creationdate>202408</creationdate><title>Amorphous carbon intercalated MoS 2 nanosheets embedded on reduced graphene oxide for excellent high‐rate and ultralong cycling sodium storage</title><author>Xu, Jun ; Jiang, Junbao ; Cao, Shoufu ; Li, Suwan ; Ma, Yuanming ; Chen, Junwei ; Zhang, Yan ; Lu, Xiaoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_eom2_124793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jun</creatorcontrib><creatorcontrib>Jiang, Junbao</creatorcontrib><creatorcontrib>Cao, Shoufu</creatorcontrib><creatorcontrib>Li, Suwan</creatorcontrib><creatorcontrib>Ma, Yuanming</creatorcontrib><creatorcontrib>Chen, Junwei</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Lu, Xiaoqing</creatorcontrib><collection>CrossRef</collection><jtitle>EcoMat (Beijing, China)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jun</au><au>Jiang, Junbao</au><au>Cao, Shoufu</au><au>Li, Suwan</au><au>Ma, Yuanming</au><au>Chen, Junwei</au><au>Zhang, Yan</au><au>Lu, Xiaoqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Amorphous carbon intercalated MoS 2 nanosheets embedded on reduced graphene oxide for excellent high‐rate and ultralong cycling sodium storage</atitle><jtitle>EcoMat (Beijing, China)</jtitle><date>2024-08</date><risdate>2024</risdate><volume>6</volume><issue>8</issue><issn>2567-3173</issn><eissn>2567-3173</eissn><abstract>MoS 2 as a typical layered transition metal dichalcogenide (LTMD) has attracted considerable attention to work as sodium host materials for sodium‐ion batteries (SIBs). However, it suffers from low semiconducting behavior and high Na + diffusion barriers. Herein, intercalation of N‐doped amorphous carbon (NAC) into each interlayer of the tiny MoS 2 nanosheets embedded on rGO conductive network is achieved, resulting in formation of rGO@MoS 2 /NAC hierarchy with interoverlapped MoS 2 /NAC superlattices for high‐performance SIBs. Attributed to intercalation of NAC, the resulting MoS 2 /NAC superlattices with wide MoS 2 interlayer of 1.02 nm facilitates rapid Na + insertion/extraction and accelerates reaction kinetics. Theoretical calculations uncover that the MoS 2 /NAC superlattices are beneficial for enhanced electron transport, decreased Na + diffusion barrier and improved Na + adsorption energy. The rGO@MoS 2 /NAC anode presents significantly improved high‐rate capabilities of 228, 207, and 166 mAh g −1 at 20, 30, and 50 A g −1 , respectively, compared with two control samples of pristine MoS 2 and MoS 2 /NAC counterparts. Excellent long‐term cyclability over 10 000 cycles with extremely low capacity decay is demonstrated at high current densities of 20 and 50 A g −1 . Sodium‐ion full cells based on the rGO@MoS 2 /NAC anode are also demonstrated, yielding decent cycling stability of 200 cycles at 5C. Our work provides a novel interlayer strategy to regulate electron/Na + transport for fast‐charging SIBs. image</abstract><doi>10.1002/eom2.12479</doi><orcidid>https://orcid.org/0000-0001-9829-4382</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2567-3173
ispartof EcoMat (Beijing, China), 2024-08, Vol.6 (8)
issn 2567-3173
2567-3173
language eng
recordid cdi_crossref_primary_10_1002_eom2_12479
source DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley-Blackwell Open Access Titles
title Amorphous carbon intercalated MoS 2 nanosheets embedded on reduced graphene oxide for excellent high‐rate and ultralong cycling sodium storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A55%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Amorphous%20carbon%20intercalated%20MoS%202%20nanosheets%20embedded%20on%20reduced%20graphene%20oxide%20for%20excellent%20high%E2%80%90rate%20and%20ultralong%20cycling%20sodium%20storage&rft.jtitle=EcoMat%20(Beijing,%20China)&rft.au=Xu,%20Jun&rft.date=2024-08&rft.volume=6&rft.issue=8&rft.issn=2567-3173&rft.eissn=2567-3173&rft_id=info:doi/10.1002/eom2.12479&rft_dat=%3Ccrossref%3E10_1002_eom2_12479%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true