Estimating the spatial distribution of the white shark in the Mediterranean Sea via an integrated species distribution model accounting for physical barriers

Conserving oceanic apex predators, such as sharks, is of utmost importance. However, scant abundance and distribution data often challenge understanding the population status of many threatened species. Occurrence records are often scarce and opportunistic, and fieldwork aimed to retrieve additional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmetrics (London, Ont.) Ont.), 2024-07
Hauptverfasser: Panunzi, Greta, Moro, Stefano, Marques, Isa, Martino, Sara, Colloca, Francesco, Ferretti, Francesco, Jona Lasinio, Giovanna
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Environmetrics (London, Ont.)
container_volume
creator Panunzi, Greta
Moro, Stefano
Marques, Isa
Martino, Sara
Colloca, Francesco
Ferretti, Francesco
Jona Lasinio, Giovanna
description Conserving oceanic apex predators, such as sharks, is of utmost importance. However, scant abundance and distribution data often challenge understanding the population status of many threatened species. Occurrence records are often scarce and opportunistic, and fieldwork aimed to retrieve additional data is expensive and prone to failure. Integrating various data sources becomes crucial to developing species distribution models for informed sampling and conservation purposes. The white shark, for example, is a rare but persistent inhabitant of the Mediterranean Sea. Here, it is considered Critically Endangered by the IUCN, while population abundance, distribution patterns, and habitat use are still poorly known. This study uses available occurrence records from 1985 to 2021 from diverse sources to construct a spatial log‐Gaussian Cox process, with data‐source specific detection functions and thinning, and accounting for physical barriers. This model estimates white shark presence intensity alongside uncertainty through a Bayesian approach with Integrated Nested Laplace Approximation (INLA) and the inlabru R package. For the first time, we projected species occurrence hot spots and landscapes of relative abundance (continuous measure of animal density in space) throughout the Mediterranean Sea. This approach can be used with other rare species for which presence‐only data from different sources are available.
doi_str_mv 10.1002/env.2876
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_env_2876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_env_2876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c118t-a9a05e4a8cfdfc706de6b51f327e3f834e7d738126dad9c147701843c33211ab3</originalsourceid><addsrcrecordid>eNpVkMFOwzAQRC0EEqUg8Qk-ckmx4yROjqgqFKmIAyBxizb2ujG0TmW7Rf0Y_hW3cOG0o9nVjPYRcs3ZhDOW36LbTfJaVidkxFnTZKwp30-T5jXLCsaac3IRwgdLqirliHzPQrRriNYtaeyRhk3SsKLahuhtt412cHQwx91Xb2O66MF_UuuO1hPq5HkPDsHRFwS6s0CTtC7i0kNEnSJRWQz_I9eDxhUFpYatO5abwdNNvw9WpfYOvLfowyU5M7AKePU3x-TtfvY6nWeL54fH6d0iU-mvmEEDrMQCamW0UZJVGquu5EbkEoWpRYFSS1HzvNKgG8ULKRmvC6GEyDmHTozJzW-u8kMIHk278YmK37ectQesbcLaHrCKHylbb5M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Estimating the spatial distribution of the white shark in the Mediterranean Sea via an integrated species distribution model accounting for physical barriers</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Panunzi, Greta ; Moro, Stefano ; Marques, Isa ; Martino, Sara ; Colloca, Francesco ; Ferretti, Francesco ; Jona Lasinio, Giovanna</creator><creatorcontrib>Panunzi, Greta ; Moro, Stefano ; Marques, Isa ; Martino, Sara ; Colloca, Francesco ; Ferretti, Francesco ; Jona Lasinio, Giovanna</creatorcontrib><description>Conserving oceanic apex predators, such as sharks, is of utmost importance. However, scant abundance and distribution data often challenge understanding the population status of many threatened species. Occurrence records are often scarce and opportunistic, and fieldwork aimed to retrieve additional data is expensive and prone to failure. Integrating various data sources becomes crucial to developing species distribution models for informed sampling and conservation purposes. The white shark, for example, is a rare but persistent inhabitant of the Mediterranean Sea. Here, it is considered Critically Endangered by the IUCN, while population abundance, distribution patterns, and habitat use are still poorly known. This study uses available occurrence records from 1985 to 2021 from diverse sources to construct a spatial log‐Gaussian Cox process, with data‐source specific detection functions and thinning, and accounting for physical barriers. This model estimates white shark presence intensity alongside uncertainty through a Bayesian approach with Integrated Nested Laplace Approximation (INLA) and the inlabru R package. For the first time, we projected species occurrence hot spots and landscapes of relative abundance (continuous measure of animal density in space) throughout the Mediterranean Sea. This approach can be used with other rare species for which presence‐only data from different sources are available.</description><identifier>ISSN: 1180-4009</identifier><identifier>EISSN: 1099-095X</identifier><identifier>DOI: 10.1002/env.2876</identifier><language>eng</language><ispartof>Environmetrics (London, Ont.), 2024-07</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c118t-a9a05e4a8cfdfc706de6b51f327e3f834e7d738126dad9c147701843c33211ab3</cites><orcidid>0000-0003-4326-9029 ; 0000-0001-7424-1382 ; 0000-0001-8912-5018 ; 0000-0002-8549-5676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Panunzi, Greta</creatorcontrib><creatorcontrib>Moro, Stefano</creatorcontrib><creatorcontrib>Marques, Isa</creatorcontrib><creatorcontrib>Martino, Sara</creatorcontrib><creatorcontrib>Colloca, Francesco</creatorcontrib><creatorcontrib>Ferretti, Francesco</creatorcontrib><creatorcontrib>Jona Lasinio, Giovanna</creatorcontrib><title>Estimating the spatial distribution of the white shark in the Mediterranean Sea via an integrated species distribution model accounting for physical barriers</title><title>Environmetrics (London, Ont.)</title><description>Conserving oceanic apex predators, such as sharks, is of utmost importance. However, scant abundance and distribution data often challenge understanding the population status of many threatened species. Occurrence records are often scarce and opportunistic, and fieldwork aimed to retrieve additional data is expensive and prone to failure. Integrating various data sources becomes crucial to developing species distribution models for informed sampling and conservation purposes. The white shark, for example, is a rare but persistent inhabitant of the Mediterranean Sea. Here, it is considered Critically Endangered by the IUCN, while population abundance, distribution patterns, and habitat use are still poorly known. This study uses available occurrence records from 1985 to 2021 from diverse sources to construct a spatial log‐Gaussian Cox process, with data‐source specific detection functions and thinning, and accounting for physical barriers. This model estimates white shark presence intensity alongside uncertainty through a Bayesian approach with Integrated Nested Laplace Approximation (INLA) and the inlabru R package. For the first time, we projected species occurrence hot spots and landscapes of relative abundance (continuous measure of animal density in space) throughout the Mediterranean Sea. This approach can be used with other rare species for which presence‐only data from different sources are available.</description><issn>1180-4009</issn><issn>1099-095X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpVkMFOwzAQRC0EEqUg8Qk-ckmx4yROjqgqFKmIAyBxizb2ujG0TmW7Rf0Y_hW3cOG0o9nVjPYRcs3ZhDOW36LbTfJaVidkxFnTZKwp30-T5jXLCsaac3IRwgdLqirliHzPQrRriNYtaeyRhk3SsKLahuhtt412cHQwx91Xb2O66MF_UuuO1hPq5HkPDsHRFwS6s0CTtC7i0kNEnSJRWQz_I9eDxhUFpYatO5abwdNNvw9WpfYOvLfowyU5M7AKePU3x-TtfvY6nWeL54fH6d0iU-mvmEEDrMQCamW0UZJVGquu5EbkEoWpRYFSS1HzvNKgG8ULKRmvC6GEyDmHTozJzW-u8kMIHk278YmK37ectQesbcLaHrCKHylbb5M</recordid><startdate>20240708</startdate><enddate>20240708</enddate><creator>Panunzi, Greta</creator><creator>Moro, Stefano</creator><creator>Marques, Isa</creator><creator>Martino, Sara</creator><creator>Colloca, Francesco</creator><creator>Ferretti, Francesco</creator><creator>Jona Lasinio, Giovanna</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4326-9029</orcidid><orcidid>https://orcid.org/0000-0001-7424-1382</orcidid><orcidid>https://orcid.org/0000-0001-8912-5018</orcidid><orcidid>https://orcid.org/0000-0002-8549-5676</orcidid></search><sort><creationdate>20240708</creationdate><title>Estimating the spatial distribution of the white shark in the Mediterranean Sea via an integrated species distribution model accounting for physical barriers</title><author>Panunzi, Greta ; Moro, Stefano ; Marques, Isa ; Martino, Sara ; Colloca, Francesco ; Ferretti, Francesco ; Jona Lasinio, Giovanna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c118t-a9a05e4a8cfdfc706de6b51f327e3f834e7d738126dad9c147701843c33211ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panunzi, Greta</creatorcontrib><creatorcontrib>Moro, Stefano</creatorcontrib><creatorcontrib>Marques, Isa</creatorcontrib><creatorcontrib>Martino, Sara</creatorcontrib><creatorcontrib>Colloca, Francesco</creatorcontrib><creatorcontrib>Ferretti, Francesco</creatorcontrib><creatorcontrib>Jona Lasinio, Giovanna</creatorcontrib><collection>CrossRef</collection><jtitle>Environmetrics (London, Ont.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panunzi, Greta</au><au>Moro, Stefano</au><au>Marques, Isa</au><au>Martino, Sara</au><au>Colloca, Francesco</au><au>Ferretti, Francesco</au><au>Jona Lasinio, Giovanna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the spatial distribution of the white shark in the Mediterranean Sea via an integrated species distribution model accounting for physical barriers</atitle><jtitle>Environmetrics (London, Ont.)</jtitle><date>2024-07-08</date><risdate>2024</risdate><issn>1180-4009</issn><eissn>1099-095X</eissn><abstract>Conserving oceanic apex predators, such as sharks, is of utmost importance. However, scant abundance and distribution data often challenge understanding the population status of many threatened species. Occurrence records are often scarce and opportunistic, and fieldwork aimed to retrieve additional data is expensive and prone to failure. Integrating various data sources becomes crucial to developing species distribution models for informed sampling and conservation purposes. The white shark, for example, is a rare but persistent inhabitant of the Mediterranean Sea. Here, it is considered Critically Endangered by the IUCN, while population abundance, distribution patterns, and habitat use are still poorly known. This study uses available occurrence records from 1985 to 2021 from diverse sources to construct a spatial log‐Gaussian Cox process, with data‐source specific detection functions and thinning, and accounting for physical barriers. This model estimates white shark presence intensity alongside uncertainty through a Bayesian approach with Integrated Nested Laplace Approximation (INLA) and the inlabru R package. For the first time, we projected species occurrence hot spots and landscapes of relative abundance (continuous measure of animal density in space) throughout the Mediterranean Sea. This approach can be used with other rare species for which presence‐only data from different sources are available.</abstract><doi>10.1002/env.2876</doi><orcidid>https://orcid.org/0000-0003-4326-9029</orcidid><orcidid>https://orcid.org/0000-0001-7424-1382</orcidid><orcidid>https://orcid.org/0000-0001-8912-5018</orcidid><orcidid>https://orcid.org/0000-0002-8549-5676</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1180-4009
ispartof Environmetrics (London, Ont.), 2024-07
issn 1180-4009
1099-095X
language eng
recordid cdi_crossref_primary_10_1002_env_2876
source Wiley Online Library - AutoHoldings Journals
title Estimating the spatial distribution of the white shark in the Mediterranean Sea via an integrated species distribution model accounting for physical barriers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20spatial%20distribution%20of%20the%20white%20shark%20in%20the%20Mediterranean%20Sea%20via%20an%20integrated%20species%20distribution%20model%20accounting%20for%20physical%20barriers&rft.jtitle=Environmetrics%20(London,%20Ont.)&rft.au=Panunzi,%20Greta&rft.date=2024-07-08&rft.issn=1180-4009&rft.eissn=1099-095X&rft_id=info:doi/10.1002/env.2876&rft_dat=%3Ccrossref%3E10_1002_env_2876%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true