Liquid Piston Compression Heat Transfer Prediction via Thermal‐Resistance Network: Simulation, Experimental Validation, and Liquid Carryover Evaluation

Liquid piston compressors gain attention due to their potential for more efficient and isothermal compression compared to traditional solid piston compressors. Liquid piston compressors use a liquid column instead of a solid piston, allowing for innovative mechanisms to enhance heat transfer and ach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy technology (Weinheim, Germany) Germany), 2024-09
Hauptverfasser: Middleton, Luke, Bernagozzi, Marco, Morgan, Rob, Milton, Gareth, Atkins, Andrew, Atkins, Penny
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Energy technology (Weinheim, Germany)
container_volume
creator Middleton, Luke
Bernagozzi, Marco
Morgan, Rob
Milton, Gareth
Atkins, Andrew
Atkins, Penny
description Liquid piston compressors gain attention due to their potential for more efficient and isothermal compression compared to traditional solid piston compressors. Liquid piston compressors use a liquid column instead of a solid piston, allowing for innovative mechanisms to enhance heat transfer and achieve near‐isothermal compression. However, a validated analytical model for heat transfer in liquid piston compressors is still needed to understand the exhaust phase within a liquid piston. In this work, a thermal network model, able to predict the polytropic index to within 8% of the experimental results, is proposed. Moreover, thorough experimentation is conducted to measure the amount of liquid carried over to better understand the exhaust phase. In the results, it is revealed that the piston carries over 13–21 mL of liquid within the exhaust gas for 10–23 s of stroke. Notably, the difference in liquid carried over for the three‐stroke times is not statistically significant, indicating that the liquid carried over is a function of liquid piston design and not stroke time. Finally, most liquid piston applications consider only water; hence, for the first time, this research assesses the stability of a cycle using a nonflammable hydraulic fluid (Fuchs 46 M red) to enhance compressor longevity and material compatibility.
doi_str_mv 10.1002/ente.202401121
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_ente_202401121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_ente_202401121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c164t-baadbeed0d4340a123a61facc68b56e3123cf2871186cd3b77a1f56bb6e16183</originalsourceid><addsrcrecordid>eNo9UMtOwzAQjBBIVKVXzv4AWrx24qbcUFQoUgUVRFyjjb0RhjyKnRZ64xO48nt8CQlUnHa0M7szmiA4BT4BzsU51S1NBBchBxBwEAwEzMJxKGbq8B_H8XEw8v6Zcw48khGXg-BraV831rCV9W1Ts6Sp1o68tx1eELYsdVj7ghxbOTJWtz2xtcjSJ3IVlt8fn_fku1usNbFbat8a93LBHmy1KbEXn7H5-5qcrbqAWLJHLK3ZE1gbtndP0Llds-1s5lssN7-Ck-CowNLTaD-HQXo1T5PFeHl3fZNcLscaVNiOc0STExluQhlyBCFRQYFaqziPFMluoQsRTwFipY3Mp1OEIlJ5rggUxHIYTP7eatd476jI1l1adLsMeNZXm_XVZv_Vyh-w2HHu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Liquid Piston Compression Heat Transfer Prediction via Thermal‐Resistance Network: Simulation, Experimental Validation, and Liquid Carryover Evaluation</title><source>Access via Wiley Online Library</source><creator>Middleton, Luke ; Bernagozzi, Marco ; Morgan, Rob ; Milton, Gareth ; Atkins, Andrew ; Atkins, Penny</creator><creatorcontrib>Middleton, Luke ; Bernagozzi, Marco ; Morgan, Rob ; Milton, Gareth ; Atkins, Andrew ; Atkins, Penny</creatorcontrib><description>Liquid piston compressors gain attention due to their potential for more efficient and isothermal compression compared to traditional solid piston compressors. Liquid piston compressors use a liquid column instead of a solid piston, allowing for innovative mechanisms to enhance heat transfer and achieve near‐isothermal compression. However, a validated analytical model for heat transfer in liquid piston compressors is still needed to understand the exhaust phase within a liquid piston. In this work, a thermal network model, able to predict the polytropic index to within 8% of the experimental results, is proposed. Moreover, thorough experimentation is conducted to measure the amount of liquid carried over to better understand the exhaust phase. In the results, it is revealed that the piston carries over 13–21 mL of liquid within the exhaust gas for 10–23 s of stroke. Notably, the difference in liquid carried over for the three‐stroke times is not statistically significant, indicating that the liquid carried over is a function of liquid piston design and not stroke time. Finally, most liquid piston applications consider only water; hence, for the first time, this research assesses the stability of a cycle using a nonflammable hydraulic fluid (Fuchs 46 M red) to enhance compressor longevity and material compatibility.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.202401121</identifier><language>eng</language><ispartof>Energy technology (Weinheim, Germany), 2024-09</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c164t-baadbeed0d4340a123a61facc68b56e3123cf2871186cd3b77a1f56bb6e16183</cites><orcidid>0009-0002-6634-7413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Middleton, Luke</creatorcontrib><creatorcontrib>Bernagozzi, Marco</creatorcontrib><creatorcontrib>Morgan, Rob</creatorcontrib><creatorcontrib>Milton, Gareth</creatorcontrib><creatorcontrib>Atkins, Andrew</creatorcontrib><creatorcontrib>Atkins, Penny</creatorcontrib><title>Liquid Piston Compression Heat Transfer Prediction via Thermal‐Resistance Network: Simulation, Experimental Validation, and Liquid Carryover Evaluation</title><title>Energy technology (Weinheim, Germany)</title><description>Liquid piston compressors gain attention due to their potential for more efficient and isothermal compression compared to traditional solid piston compressors. Liquid piston compressors use a liquid column instead of a solid piston, allowing for innovative mechanisms to enhance heat transfer and achieve near‐isothermal compression. However, a validated analytical model for heat transfer in liquid piston compressors is still needed to understand the exhaust phase within a liquid piston. In this work, a thermal network model, able to predict the polytropic index to within 8% of the experimental results, is proposed. Moreover, thorough experimentation is conducted to measure the amount of liquid carried over to better understand the exhaust phase. In the results, it is revealed that the piston carries over 13–21 mL of liquid within the exhaust gas for 10–23 s of stroke. Notably, the difference in liquid carried over for the three‐stroke times is not statistically significant, indicating that the liquid carried over is a function of liquid piston design and not stroke time. Finally, most liquid piston applications consider only water; hence, for the first time, this research assesses the stability of a cycle using a nonflammable hydraulic fluid (Fuchs 46 M red) to enhance compressor longevity and material compatibility.</description><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9UMtOwzAQjBBIVKVXzv4AWrx24qbcUFQoUgUVRFyjjb0RhjyKnRZ64xO48nt8CQlUnHa0M7szmiA4BT4BzsU51S1NBBchBxBwEAwEzMJxKGbq8B_H8XEw8v6Zcw48khGXg-BraV831rCV9W1Ts6Sp1o68tx1eELYsdVj7ghxbOTJWtz2xtcjSJ3IVlt8fn_fku1usNbFbat8a93LBHmy1KbEXn7H5-5qcrbqAWLJHLK3ZE1gbtndP0Llds-1s5lssN7-Ck-CowNLTaD-HQXo1T5PFeHl3fZNcLscaVNiOc0STExluQhlyBCFRQYFaqziPFMluoQsRTwFipY3Mp1OEIlJ5rggUxHIYTP7eatd476jI1l1adLsMeNZXm_XVZv_Vyh-w2HHu</recordid><startdate>20240919</startdate><enddate>20240919</enddate><creator>Middleton, Luke</creator><creator>Bernagozzi, Marco</creator><creator>Morgan, Rob</creator><creator>Milton, Gareth</creator><creator>Atkins, Andrew</creator><creator>Atkins, Penny</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0002-6634-7413</orcidid></search><sort><creationdate>20240919</creationdate><title>Liquid Piston Compression Heat Transfer Prediction via Thermal‐Resistance Network: Simulation, Experimental Validation, and Liquid Carryover Evaluation</title><author>Middleton, Luke ; Bernagozzi, Marco ; Morgan, Rob ; Milton, Gareth ; Atkins, Andrew ; Atkins, Penny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c164t-baadbeed0d4340a123a61facc68b56e3123cf2871186cd3b77a1f56bb6e16183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Middleton, Luke</creatorcontrib><creatorcontrib>Bernagozzi, Marco</creatorcontrib><creatorcontrib>Morgan, Rob</creatorcontrib><creatorcontrib>Milton, Gareth</creatorcontrib><creatorcontrib>Atkins, Andrew</creatorcontrib><creatorcontrib>Atkins, Penny</creatorcontrib><collection>CrossRef</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Middleton, Luke</au><au>Bernagozzi, Marco</au><au>Morgan, Rob</au><au>Milton, Gareth</au><au>Atkins, Andrew</au><au>Atkins, Penny</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid Piston Compression Heat Transfer Prediction via Thermal‐Resistance Network: Simulation, Experimental Validation, and Liquid Carryover Evaluation</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2024-09-19</date><risdate>2024</risdate><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>Liquid piston compressors gain attention due to their potential for more efficient and isothermal compression compared to traditional solid piston compressors. Liquid piston compressors use a liquid column instead of a solid piston, allowing for innovative mechanisms to enhance heat transfer and achieve near‐isothermal compression. However, a validated analytical model for heat transfer in liquid piston compressors is still needed to understand the exhaust phase within a liquid piston. In this work, a thermal network model, able to predict the polytropic index to within 8% of the experimental results, is proposed. Moreover, thorough experimentation is conducted to measure the amount of liquid carried over to better understand the exhaust phase. In the results, it is revealed that the piston carries over 13–21 mL of liquid within the exhaust gas for 10–23 s of stroke. Notably, the difference in liquid carried over for the three‐stroke times is not statistically significant, indicating that the liquid carried over is a function of liquid piston design and not stroke time. Finally, most liquid piston applications consider only water; hence, for the first time, this research assesses the stability of a cycle using a nonflammable hydraulic fluid (Fuchs 46 M red) to enhance compressor longevity and material compatibility.</abstract><doi>10.1002/ente.202401121</doi><orcidid>https://orcid.org/0009-0002-6634-7413</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2194-4288
ispartof Energy technology (Weinheim, Germany), 2024-09
issn 2194-4288
2194-4296
language eng
recordid cdi_crossref_primary_10_1002_ente_202401121
source Access via Wiley Online Library
title Liquid Piston Compression Heat Transfer Prediction via Thermal‐Resistance Network: Simulation, Experimental Validation, and Liquid Carryover Evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T03%3A42%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%20Piston%20Compression%20Heat%20Transfer%20Prediction%20via%20Thermal%E2%80%90Resistance%20Network:%20Simulation,%20Experimental%20Validation,%20and%20Liquid%20Carryover%20Evaluation&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Middleton,%20Luke&rft.date=2024-09-19&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.202401121&rft_dat=%3Ccrossref%3E10_1002_ente_202401121%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true