Evolving Thermal Energy Storage Using Hybrid Nanoparticle: An Experimental Investigation on Salt Hydrate Phase Change Materials for Greener Future

Thermal energy storage (TES) assisted with phase change materials (PCM)s seeks greater attention to bridge the gap between energy demand and supply. PCM has its footprint toward efficient storage of solar energy. Inorganic salt hydrate PCMs are propitious over organic PCMs in terms of energy storage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy technology (Weinheim, Germany) Germany), 2024-04
Hauptverfasser: Balasubramanian, Kalidasan, Pandey, Adarsh Kumar, Bhutto, Yasir Ali, Islam, Anas, Kareri, Tareq, Rahman, Saidur, Buddhi, Dharam, Tyagi, Vineet Veer
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Energy technology (Weinheim, Germany)
container_volume
creator Balasubramanian, Kalidasan
Pandey, Adarsh Kumar
Bhutto, Yasir Ali
Islam, Anas
Kareri, Tareq
Rahman, Saidur
Buddhi, Dharam
Tyagi, Vineet Veer
description Thermal energy storage (TES) assisted with phase change materials (PCM)s seeks greater attention to bridge the gap between energy demand and supply. PCM has its footprint toward efficient storage of solar energy. Inorganic salt hydrate PCMs are propitious over organic PCMs in terms of energy storage ability, thermal conductivity, and fireproof, however the major issue of supercooling and poor optical absorbance remains. This research investigates commercialized inorganic salt hydrate PCM with phase transition temperature of 50 °C, thermal conductivity of 0.593 Wm −1  K −1 which is favoured with melting enthalpy of 190 J g −1 , and 2–3 °C of supercooling. Mixture of graphene: silver at a proportion of (1:1) is used as the hybrid nanomaterial to further enhance the thermal conductivity, optical absorbance, and thermal stability. Hybrid nanocomposites are developed via two‐step process involving direct mixing and ultrasonication. Morphological behaviour, chemical stability, optical property, thermal property, thermal reliability, and stability of the developed nanocomposite samples are experimentally analysed. As a result, sustainable TES materials with thermal conductivity of 0.937 Wm −1  K −1 , optical absorbance of 0.8, increased energy storage potential is formulated. Subsequently a numerical simulation is conducted to illustrate the potential of the developed nanocomposite in transfer of heat energy.
doi_str_mv 10.1002/ente.202400248
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_ente_202400248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_ente_202400248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c194t-4e81c15cec23d99f30dff32b290bbcf770b3dd9d8539f0b4ca6d8acdc5988b7f3</originalsourceid><addsrcrecordid>eNo9UF1rwjAUDWODifN1z_kDdWnSarI3kfoB7gPU55ImN7WjppJEmX9jv3gpG8KF-3G453AOQs8pGaeE0BewAcaU0CwuGb9DA5qKLMmomNzfZs4f0cj7L0JISnKWEzZAP8Wlay-NrfHuAO4oW1xYcPUVb0PnZA1473twda1co_G7tN1JutCoFl7xzOLi-wSuOUb1-Lm2F_ChqWVoOotjbWUb4qt2MgD-PEgPeH6QNrK-xYtrZOux6RxeOoCoihfncHbwhB5MRGD034dovyh281Wy-Viu57NNoqKdkGTAU5XmChRlWgjDiDaG0YoKUlXKTKekYloLzXMmDKkyJSeaS6VVLjivpoYN0fiPV7nOewemPEUr0l3LlJR9qGUfankLlf0CGP5uZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evolving Thermal Energy Storage Using Hybrid Nanoparticle: An Experimental Investigation on Salt Hydrate Phase Change Materials for Greener Future</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Balasubramanian, Kalidasan ; Pandey, Adarsh Kumar ; Bhutto, Yasir Ali ; Islam, Anas ; Kareri, Tareq ; Rahman, Saidur ; Buddhi, Dharam ; Tyagi, Vineet Veer</creator><creatorcontrib>Balasubramanian, Kalidasan ; Pandey, Adarsh Kumar ; Bhutto, Yasir Ali ; Islam, Anas ; Kareri, Tareq ; Rahman, Saidur ; Buddhi, Dharam ; Tyagi, Vineet Veer</creatorcontrib><description>Thermal energy storage (TES) assisted with phase change materials (PCM)s seeks greater attention to bridge the gap between energy demand and supply. PCM has its footprint toward efficient storage of solar energy. Inorganic salt hydrate PCMs are propitious over organic PCMs in terms of energy storage ability, thermal conductivity, and fireproof, however the major issue of supercooling and poor optical absorbance remains. This research investigates commercialized inorganic salt hydrate PCM with phase transition temperature of 50 °C, thermal conductivity of 0.593 Wm −1  K −1 which is favoured with melting enthalpy of 190 J g −1 , and 2–3 °C of supercooling. Mixture of graphene: silver at a proportion of (1:1) is used as the hybrid nanomaterial to further enhance the thermal conductivity, optical absorbance, and thermal stability. Hybrid nanocomposites are developed via two‐step process involving direct mixing and ultrasonication. Morphological behaviour, chemical stability, optical property, thermal property, thermal reliability, and stability of the developed nanocomposite samples are experimentally analysed. As a result, sustainable TES materials with thermal conductivity of 0.937 Wm −1  K −1 , optical absorbance of 0.8, increased energy storage potential is formulated. Subsequently a numerical simulation is conducted to illustrate the potential of the developed nanocomposite in transfer of heat energy.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.202400248</identifier><language>eng</language><ispartof>Energy technology (Weinheim, Germany), 2024-04</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c194t-4e81c15cec23d99f30dff32b290bbcf770b3dd9d8539f0b4ca6d8acdc5988b7f3</cites><orcidid>0000-0002-4345-0445 ; 0000-0001-6033-2822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Balasubramanian, Kalidasan</creatorcontrib><creatorcontrib>Pandey, Adarsh Kumar</creatorcontrib><creatorcontrib>Bhutto, Yasir Ali</creatorcontrib><creatorcontrib>Islam, Anas</creatorcontrib><creatorcontrib>Kareri, Tareq</creatorcontrib><creatorcontrib>Rahman, Saidur</creatorcontrib><creatorcontrib>Buddhi, Dharam</creatorcontrib><creatorcontrib>Tyagi, Vineet Veer</creatorcontrib><title>Evolving Thermal Energy Storage Using Hybrid Nanoparticle: An Experimental Investigation on Salt Hydrate Phase Change Materials for Greener Future</title><title>Energy technology (Weinheim, Germany)</title><description>Thermal energy storage (TES) assisted with phase change materials (PCM)s seeks greater attention to bridge the gap between energy demand and supply. PCM has its footprint toward efficient storage of solar energy. Inorganic salt hydrate PCMs are propitious over organic PCMs in terms of energy storage ability, thermal conductivity, and fireproof, however the major issue of supercooling and poor optical absorbance remains. This research investigates commercialized inorganic salt hydrate PCM with phase transition temperature of 50 °C, thermal conductivity of 0.593 Wm −1  K −1 which is favoured with melting enthalpy of 190 J g −1 , and 2–3 °C of supercooling. Mixture of graphene: silver at a proportion of (1:1) is used as the hybrid nanomaterial to further enhance the thermal conductivity, optical absorbance, and thermal stability. Hybrid nanocomposites are developed via two‐step process involving direct mixing and ultrasonication. Morphological behaviour, chemical stability, optical property, thermal property, thermal reliability, and stability of the developed nanocomposite samples are experimentally analysed. As a result, sustainable TES materials with thermal conductivity of 0.937 Wm −1  K −1 , optical absorbance of 0.8, increased energy storage potential is formulated. Subsequently a numerical simulation is conducted to illustrate the potential of the developed nanocomposite in transfer of heat energy.</description><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9UF1rwjAUDWODifN1z_kDdWnSarI3kfoB7gPU55ImN7WjppJEmX9jv3gpG8KF-3G453AOQs8pGaeE0BewAcaU0CwuGb9DA5qKLMmomNzfZs4f0cj7L0JISnKWEzZAP8Wlay-NrfHuAO4oW1xYcPUVb0PnZA1473twda1co_G7tN1JutCoFl7xzOLi-wSuOUb1-Lm2F_ChqWVoOotjbWUb4qt2MgD-PEgPeH6QNrK-xYtrZOux6RxeOoCoihfncHbwhB5MRGD034dovyh281Wy-Viu57NNoqKdkGTAU5XmChRlWgjDiDaG0YoKUlXKTKekYloLzXMmDKkyJSeaS6VVLjivpoYN0fiPV7nOewemPEUr0l3LlJR9qGUfankLlf0CGP5uZA</recordid><startdate>20240414</startdate><enddate>20240414</enddate><creator>Balasubramanian, Kalidasan</creator><creator>Pandey, Adarsh Kumar</creator><creator>Bhutto, Yasir Ali</creator><creator>Islam, Anas</creator><creator>Kareri, Tareq</creator><creator>Rahman, Saidur</creator><creator>Buddhi, Dharam</creator><creator>Tyagi, Vineet Veer</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4345-0445</orcidid><orcidid>https://orcid.org/0000-0001-6033-2822</orcidid></search><sort><creationdate>20240414</creationdate><title>Evolving Thermal Energy Storage Using Hybrid Nanoparticle: An Experimental Investigation on Salt Hydrate Phase Change Materials for Greener Future</title><author>Balasubramanian, Kalidasan ; Pandey, Adarsh Kumar ; Bhutto, Yasir Ali ; Islam, Anas ; Kareri, Tareq ; Rahman, Saidur ; Buddhi, Dharam ; Tyagi, Vineet Veer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c194t-4e81c15cec23d99f30dff32b290bbcf770b3dd9d8539f0b4ca6d8acdc5988b7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balasubramanian, Kalidasan</creatorcontrib><creatorcontrib>Pandey, Adarsh Kumar</creatorcontrib><creatorcontrib>Bhutto, Yasir Ali</creatorcontrib><creatorcontrib>Islam, Anas</creatorcontrib><creatorcontrib>Kareri, Tareq</creatorcontrib><creatorcontrib>Rahman, Saidur</creatorcontrib><creatorcontrib>Buddhi, Dharam</creatorcontrib><creatorcontrib>Tyagi, Vineet Veer</creatorcontrib><collection>CrossRef</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balasubramanian, Kalidasan</au><au>Pandey, Adarsh Kumar</au><au>Bhutto, Yasir Ali</au><au>Islam, Anas</au><au>Kareri, Tareq</au><au>Rahman, Saidur</au><au>Buddhi, Dharam</au><au>Tyagi, Vineet Veer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolving Thermal Energy Storage Using Hybrid Nanoparticle: An Experimental Investigation on Salt Hydrate Phase Change Materials for Greener Future</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2024-04-14</date><risdate>2024</risdate><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>Thermal energy storage (TES) assisted with phase change materials (PCM)s seeks greater attention to bridge the gap between energy demand and supply. PCM has its footprint toward efficient storage of solar energy. Inorganic salt hydrate PCMs are propitious over organic PCMs in terms of energy storage ability, thermal conductivity, and fireproof, however the major issue of supercooling and poor optical absorbance remains. This research investigates commercialized inorganic salt hydrate PCM with phase transition temperature of 50 °C, thermal conductivity of 0.593 Wm −1  K −1 which is favoured with melting enthalpy of 190 J g −1 , and 2–3 °C of supercooling. Mixture of graphene: silver at a proportion of (1:1) is used as the hybrid nanomaterial to further enhance the thermal conductivity, optical absorbance, and thermal stability. Hybrid nanocomposites are developed via two‐step process involving direct mixing and ultrasonication. Morphological behaviour, chemical stability, optical property, thermal property, thermal reliability, and stability of the developed nanocomposite samples are experimentally analysed. As a result, sustainable TES materials with thermal conductivity of 0.937 Wm −1  K −1 , optical absorbance of 0.8, increased energy storage potential is formulated. Subsequently a numerical simulation is conducted to illustrate the potential of the developed nanocomposite in transfer of heat energy.</abstract><doi>10.1002/ente.202400248</doi><orcidid>https://orcid.org/0000-0002-4345-0445</orcidid><orcidid>https://orcid.org/0000-0001-6033-2822</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2194-4288
ispartof Energy technology (Weinheim, Germany), 2024-04
issn 2194-4288
2194-4296
language eng
recordid cdi_crossref_primary_10_1002_ente_202400248
source Wiley Online Library Journals Frontfile Complete
title Evolving Thermal Energy Storage Using Hybrid Nanoparticle: An Experimental Investigation on Salt Hydrate Phase Change Materials for Greener Future
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A17%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolving%20Thermal%20Energy%20Storage%20Using%20Hybrid%20Nanoparticle:%20An%20Experimental%20Investigation%20on%20Salt%20Hydrate%20Phase%20Change%20Materials%20for%20Greener%20Future&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Balasubramanian,%20Kalidasan&rft.date=2024-04-14&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.202400248&rft_dat=%3Ccrossref%3E10_1002_ente_202400248%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true