Preparing Li 6 V 3 (PO 4 ) 5 Cathode with Boron‐Doped Carbon Layer as a Cathode Material for Lithium‐Ion Batteries

Polyanionic cathode materials are increasingly used in research because of their good cycling performance, high theoretical capacity, and high operating voltage. However, it exhibits poor performance due to its structure, which prevents it from reaching its full theoretical capacity. In this study,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy technology (Weinheim, Germany) Germany), 2024-07, Vol.12 (7)
Hauptverfasser: Chen, Yongguang, Tian, Hualing, Cai, Yanjun, Wang, Yingbo, Yao, Xiang, Su, Zhi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Energy technology (Weinheim, Germany)
container_volume 12
creator Chen, Yongguang
Tian, Hualing
Cai, Yanjun
Wang, Yingbo
Yao, Xiang
Su, Zhi
description Polyanionic cathode materials are increasingly used in research because of their good cycling performance, high theoretical capacity, and high operating voltage. However, it exhibits poor performance due to its structure, which prevents it from reaching its full theoretical capacity. In this study, carbon‐coated Li 6 V 3 (PO 4 ) 5 @C cathode materials are constructed under Li 3 V 2 (PO 4 ) 3 research conditions using the sol–gel process and anhydrous citric acid as the carbon source. Several boron doping concentrations are investigated to create Li 6 V 3 (PO 4 ) 5 @BC cathode materials. The electrochemical measurements demonstrate that during the first cycle, at a current density of 0.5 C and a B doping quantity of 2 wt%, the specific discharge capacity of Li 6 V 3 (PO 4 ) 5 @BC reaches 167.43 mAh g −1 . The steady discharge specific capacity following 80 cycles of constant‐current charging and discharging is 136.84 mAh g −1 . Li 6 V 3 (PO 4 ) 5 @BC‐2 has a specific discharge capacity of 131.1 mAh g −1 at 2 C. The material's electrochemical performance greatly improves following the right quantity of B doping, which is primarily attributed to the increase in carbon layer defects brought on by B's entrance. This can increase the rate of lithium‐ion migration and hold more lithium ions.
doi_str_mv 10.1002/ente.202301537
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_ente_202301537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_ente_202301537</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_ente_2023015373</originalsourceid><addsrcrecordid>eNqVj81Kw0AUhQdRsNhuXd-lLhrvzCS13bYqFVrsQtwOV3tjRtpMuDMq3fkIPqNPYgKSvatz4PzAp9S5xkwjmiuuE2cGjUVd2OsjNTB6lo9zM5sc9346PVWjGN8QUWNhC7QD9bERbkh8_QorDxN4AgsXmwfI4RIKWFCqwpbh06cK5kFC_fP1fRMa3raRPIcaVnRgAYpAfXlNicXTDsog7Wmq_Pu-nd237TmlLuM4VCcl7SKP_vRMZXe3j4vl-EVCjMKla8TvSQ5Oo-sAXQfoekD778EveBhYVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Preparing Li 6 V 3 (PO 4 ) 5 Cathode with Boron‐Doped Carbon Layer as a Cathode Material for Lithium‐Ion Batteries</title><source>Access via Wiley Online Library</source><creator>Chen, Yongguang ; Tian, Hualing ; Cai, Yanjun ; Wang, Yingbo ; Yao, Xiang ; Su, Zhi</creator><creatorcontrib>Chen, Yongguang ; Tian, Hualing ; Cai, Yanjun ; Wang, Yingbo ; Yao, Xiang ; Su, Zhi</creatorcontrib><description>Polyanionic cathode materials are increasingly used in research because of their good cycling performance, high theoretical capacity, and high operating voltage. However, it exhibits poor performance due to its structure, which prevents it from reaching its full theoretical capacity. In this study, carbon‐coated Li 6 V 3 (PO 4 ) 5 @C cathode materials are constructed under Li 3 V 2 (PO 4 ) 3 research conditions using the sol–gel process and anhydrous citric acid as the carbon source. Several boron doping concentrations are investigated to create Li 6 V 3 (PO 4 ) 5 @BC cathode materials. The electrochemical measurements demonstrate that during the first cycle, at a current density of 0.5 C and a B doping quantity of 2 wt%, the specific discharge capacity of Li 6 V 3 (PO 4 ) 5 @BC reaches 167.43 mAh g −1 . The steady discharge specific capacity following 80 cycles of constant‐current charging and discharging is 136.84 mAh g −1 . Li 6 V 3 (PO 4 ) 5 @BC‐2 has a specific discharge capacity of 131.1 mAh g −1 at 2 C. The material's electrochemical performance greatly improves following the right quantity of B doping, which is primarily attributed to the increase in carbon layer defects brought on by B's entrance. This can increase the rate of lithium‐ion migration and hold more lithium ions.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.202301537</identifier><language>eng</language><ispartof>Energy technology (Weinheim, Germany), 2024-07, Vol.12 (7)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1002_ente_2023015373</cites><orcidid>0000-0002-9948-3879</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Yongguang</creatorcontrib><creatorcontrib>Tian, Hualing</creatorcontrib><creatorcontrib>Cai, Yanjun</creatorcontrib><creatorcontrib>Wang, Yingbo</creatorcontrib><creatorcontrib>Yao, Xiang</creatorcontrib><creatorcontrib>Su, Zhi</creatorcontrib><title>Preparing Li 6 V 3 (PO 4 ) 5 Cathode with Boron‐Doped Carbon Layer as a Cathode Material for Lithium‐Ion Batteries</title><title>Energy technology (Weinheim, Germany)</title><description>Polyanionic cathode materials are increasingly used in research because of their good cycling performance, high theoretical capacity, and high operating voltage. However, it exhibits poor performance due to its structure, which prevents it from reaching its full theoretical capacity. In this study, carbon‐coated Li 6 V 3 (PO 4 ) 5 @C cathode materials are constructed under Li 3 V 2 (PO 4 ) 3 research conditions using the sol–gel process and anhydrous citric acid as the carbon source. Several boron doping concentrations are investigated to create Li 6 V 3 (PO 4 ) 5 @BC cathode materials. The electrochemical measurements demonstrate that during the first cycle, at a current density of 0.5 C and a B doping quantity of 2 wt%, the specific discharge capacity of Li 6 V 3 (PO 4 ) 5 @BC reaches 167.43 mAh g −1 . The steady discharge specific capacity following 80 cycles of constant‐current charging and discharging is 136.84 mAh g −1 . Li 6 V 3 (PO 4 ) 5 @BC‐2 has a specific discharge capacity of 131.1 mAh g −1 at 2 C. The material's electrochemical performance greatly improves following the right quantity of B doping, which is primarily attributed to the increase in carbon layer defects brought on by B's entrance. This can increase the rate of lithium‐ion migration and hold more lithium ions.</description><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVj81Kw0AUhQdRsNhuXd-lLhrvzCS13bYqFVrsQtwOV3tjRtpMuDMq3fkIPqNPYgKSvatz4PzAp9S5xkwjmiuuE2cGjUVd2OsjNTB6lo9zM5sc9346PVWjGN8QUWNhC7QD9bERbkh8_QorDxN4AgsXmwfI4RIKWFCqwpbh06cK5kFC_fP1fRMa3raRPIcaVnRgAYpAfXlNicXTDsog7Wmq_Pu-nd237TmlLuM4VCcl7SKP_vRMZXe3j4vl-EVCjMKla8TvSQ5Oo-sAXQfoekD778EveBhYVw</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Chen, Yongguang</creator><creator>Tian, Hualing</creator><creator>Cai, Yanjun</creator><creator>Wang, Yingbo</creator><creator>Yao, Xiang</creator><creator>Su, Zhi</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9948-3879</orcidid></search><sort><creationdate>202407</creationdate><title>Preparing Li 6 V 3 (PO 4 ) 5 Cathode with Boron‐Doped Carbon Layer as a Cathode Material for Lithium‐Ion Batteries</title><author>Chen, Yongguang ; Tian, Hualing ; Cai, Yanjun ; Wang, Yingbo ; Yao, Xiang ; Su, Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_ente_2023015373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yongguang</creatorcontrib><creatorcontrib>Tian, Hualing</creatorcontrib><creatorcontrib>Cai, Yanjun</creatorcontrib><creatorcontrib>Wang, Yingbo</creatorcontrib><creatorcontrib>Yao, Xiang</creatorcontrib><creatorcontrib>Su, Zhi</creatorcontrib><collection>CrossRef</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yongguang</au><au>Tian, Hualing</au><au>Cai, Yanjun</au><au>Wang, Yingbo</au><au>Yao, Xiang</au><au>Su, Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparing Li 6 V 3 (PO 4 ) 5 Cathode with Boron‐Doped Carbon Layer as a Cathode Material for Lithium‐Ion Batteries</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2024-07</date><risdate>2024</risdate><volume>12</volume><issue>7</issue><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>Polyanionic cathode materials are increasingly used in research because of their good cycling performance, high theoretical capacity, and high operating voltage. However, it exhibits poor performance due to its structure, which prevents it from reaching its full theoretical capacity. In this study, carbon‐coated Li 6 V 3 (PO 4 ) 5 @C cathode materials are constructed under Li 3 V 2 (PO 4 ) 3 research conditions using the sol–gel process and anhydrous citric acid as the carbon source. Several boron doping concentrations are investigated to create Li 6 V 3 (PO 4 ) 5 @BC cathode materials. The electrochemical measurements demonstrate that during the first cycle, at a current density of 0.5 C and a B doping quantity of 2 wt%, the specific discharge capacity of Li 6 V 3 (PO 4 ) 5 @BC reaches 167.43 mAh g −1 . The steady discharge specific capacity following 80 cycles of constant‐current charging and discharging is 136.84 mAh g −1 . Li 6 V 3 (PO 4 ) 5 @BC‐2 has a specific discharge capacity of 131.1 mAh g −1 at 2 C. The material's electrochemical performance greatly improves following the right quantity of B doping, which is primarily attributed to the increase in carbon layer defects brought on by B's entrance. This can increase the rate of lithium‐ion migration and hold more lithium ions.</abstract><doi>10.1002/ente.202301537</doi><orcidid>https://orcid.org/0000-0002-9948-3879</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2194-4288
ispartof Energy technology (Weinheim, Germany), 2024-07, Vol.12 (7)
issn 2194-4288
2194-4296
language eng
recordid cdi_crossref_primary_10_1002_ente_202301537
source Access via Wiley Online Library
title Preparing Li 6 V 3 (PO 4 ) 5 Cathode with Boron‐Doped Carbon Layer as a Cathode Material for Lithium‐Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A47%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparing%20Li%206%20V%203%20(PO%204%20)%205%20Cathode%20with%20Boron%E2%80%90Doped%20Carbon%20Layer%20as%20a%20Cathode%20Material%20for%20Lithium%E2%80%90Ion%20Batteries&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Chen,%20Yongguang&rft.date=2024-07&rft.volume=12&rft.issue=7&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.202301537&rft_dat=%3Ccrossref%3E10_1002_ente_202301537%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true