Preparing Li 6 V 3 (PO 4 ) 5 Cathode with Boron‐Doped Carbon Layer as a Cathode Material for Lithium‐Ion Batteries
Polyanionic cathode materials are increasingly used in research because of their good cycling performance, high theoretical capacity, and high operating voltage. However, it exhibits poor performance due to its structure, which prevents it from reaching its full theoretical capacity. In this study,...
Gespeichert in:
Veröffentlicht in: | Energy technology (Weinheim, Germany) Germany), 2024-07, Vol.12 (7) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Energy technology (Weinheim, Germany) |
container_volume | 12 |
creator | Chen, Yongguang Tian, Hualing Cai, Yanjun Wang, Yingbo Yao, Xiang Su, Zhi |
description | Polyanionic cathode materials are increasingly used in research because of their good cycling performance, high theoretical capacity, and high operating voltage. However, it exhibits poor performance due to its structure, which prevents it from reaching its full theoretical capacity. In this study, carbon‐coated Li 6 V 3 (PO 4 ) 5 @C cathode materials are constructed under Li 3 V 2 (PO 4 ) 3 research conditions using the sol–gel process and anhydrous citric acid as the carbon source. Several boron doping concentrations are investigated to create Li 6 V 3 (PO 4 ) 5 @BC cathode materials. The electrochemical measurements demonstrate that during the first cycle, at a current density of 0.5 C and a B doping quantity of 2 wt%, the specific discharge capacity of Li 6 V 3 (PO 4 ) 5 @BC reaches 167.43 mAh g −1 . The steady discharge specific capacity following 80 cycles of constant‐current charging and discharging is 136.84 mAh g −1 . Li 6 V 3 (PO 4 ) 5 @BC‐2 has a specific discharge capacity of 131.1 mAh g −1 at 2 C. The material's electrochemical performance greatly improves following the right quantity of B doping, which is primarily attributed to the increase in carbon layer defects brought on by B's entrance. This can increase the rate of lithium‐ion migration and hold more lithium ions. |
doi_str_mv | 10.1002/ente.202301537 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_ente_202301537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_ente_202301537</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_ente_2023015373</originalsourceid><addsrcrecordid>eNqVj81Kw0AUhQdRsNhuXd-lLhrvzCS13bYqFVrsQtwOV3tjRtpMuDMq3fkIPqNPYgKSvatz4PzAp9S5xkwjmiuuE2cGjUVd2OsjNTB6lo9zM5sc9346PVWjGN8QUWNhC7QD9bERbkh8_QorDxN4AgsXmwfI4RIKWFCqwpbh06cK5kFC_fP1fRMa3raRPIcaVnRgAYpAfXlNicXTDsog7Wmq_Pu-nd237TmlLuM4VCcl7SKP_vRMZXe3j4vl-EVCjMKla8TvSQ5Oo-sAXQfoekD778EveBhYVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Preparing Li 6 V 3 (PO 4 ) 5 Cathode with Boron‐Doped Carbon Layer as a Cathode Material for Lithium‐Ion Batteries</title><source>Access via Wiley Online Library</source><creator>Chen, Yongguang ; Tian, Hualing ; Cai, Yanjun ; Wang, Yingbo ; Yao, Xiang ; Su, Zhi</creator><creatorcontrib>Chen, Yongguang ; Tian, Hualing ; Cai, Yanjun ; Wang, Yingbo ; Yao, Xiang ; Su, Zhi</creatorcontrib><description>Polyanionic cathode materials are increasingly used in research because of their good cycling performance, high theoretical capacity, and high operating voltage. However, it exhibits poor performance due to its structure, which prevents it from reaching its full theoretical capacity. In this study, carbon‐coated Li 6 V 3 (PO 4 ) 5 @C cathode materials are constructed under Li 3 V 2 (PO 4 ) 3 research conditions using the sol–gel process and anhydrous citric acid as the carbon source. Several boron doping concentrations are investigated to create Li 6 V 3 (PO 4 ) 5 @BC cathode materials. The electrochemical measurements demonstrate that during the first cycle, at a current density of 0.5 C and a B doping quantity of 2 wt%, the specific discharge capacity of Li 6 V 3 (PO 4 ) 5 @BC reaches 167.43 mAh g −1 . The steady discharge specific capacity following 80 cycles of constant‐current charging and discharging is 136.84 mAh g −1 . Li 6 V 3 (PO 4 ) 5 @BC‐2 has a specific discharge capacity of 131.1 mAh g −1 at 2 C. The material's electrochemical performance greatly improves following the right quantity of B doping, which is primarily attributed to the increase in carbon layer defects brought on by B's entrance. This can increase the rate of lithium‐ion migration and hold more lithium ions.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.202301537</identifier><language>eng</language><ispartof>Energy technology (Weinheim, Germany), 2024-07, Vol.12 (7)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1002_ente_2023015373</cites><orcidid>0000-0002-9948-3879</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, Yongguang</creatorcontrib><creatorcontrib>Tian, Hualing</creatorcontrib><creatorcontrib>Cai, Yanjun</creatorcontrib><creatorcontrib>Wang, Yingbo</creatorcontrib><creatorcontrib>Yao, Xiang</creatorcontrib><creatorcontrib>Su, Zhi</creatorcontrib><title>Preparing Li 6 V 3 (PO 4 ) 5 Cathode with Boron‐Doped Carbon Layer as a Cathode Material for Lithium‐Ion Batteries</title><title>Energy technology (Weinheim, Germany)</title><description>Polyanionic cathode materials are increasingly used in research because of their good cycling performance, high theoretical capacity, and high operating voltage. However, it exhibits poor performance due to its structure, which prevents it from reaching its full theoretical capacity. In this study, carbon‐coated Li 6 V 3 (PO 4 ) 5 @C cathode materials are constructed under Li 3 V 2 (PO 4 ) 3 research conditions using the sol–gel process and anhydrous citric acid as the carbon source. Several boron doping concentrations are investigated to create Li 6 V 3 (PO 4 ) 5 @BC cathode materials. The electrochemical measurements demonstrate that during the first cycle, at a current density of 0.5 C and a B doping quantity of 2 wt%, the specific discharge capacity of Li 6 V 3 (PO 4 ) 5 @BC reaches 167.43 mAh g −1 . The steady discharge specific capacity following 80 cycles of constant‐current charging and discharging is 136.84 mAh g −1 . Li 6 V 3 (PO 4 ) 5 @BC‐2 has a specific discharge capacity of 131.1 mAh g −1 at 2 C. The material's electrochemical performance greatly improves following the right quantity of B doping, which is primarily attributed to the increase in carbon layer defects brought on by B's entrance. This can increase the rate of lithium‐ion migration and hold more lithium ions.</description><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVj81Kw0AUhQdRsNhuXd-lLhrvzCS13bYqFVrsQtwOV3tjRtpMuDMq3fkIPqNPYgKSvatz4PzAp9S5xkwjmiuuE2cGjUVd2OsjNTB6lo9zM5sc9346PVWjGN8QUWNhC7QD9bERbkh8_QorDxN4AgsXmwfI4RIKWFCqwpbh06cK5kFC_fP1fRMa3raRPIcaVnRgAYpAfXlNicXTDsog7Wmq_Pu-nd237TmlLuM4VCcl7SKP_vRMZXe3j4vl-EVCjMKla8TvSQ5Oo-sAXQfoekD778EveBhYVw</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Chen, Yongguang</creator><creator>Tian, Hualing</creator><creator>Cai, Yanjun</creator><creator>Wang, Yingbo</creator><creator>Yao, Xiang</creator><creator>Su, Zhi</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9948-3879</orcidid></search><sort><creationdate>202407</creationdate><title>Preparing Li 6 V 3 (PO 4 ) 5 Cathode with Boron‐Doped Carbon Layer as a Cathode Material for Lithium‐Ion Batteries</title><author>Chen, Yongguang ; Tian, Hualing ; Cai, Yanjun ; Wang, Yingbo ; Yao, Xiang ; Su, Zhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_ente_2023015373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yongguang</creatorcontrib><creatorcontrib>Tian, Hualing</creatorcontrib><creatorcontrib>Cai, Yanjun</creatorcontrib><creatorcontrib>Wang, Yingbo</creatorcontrib><creatorcontrib>Yao, Xiang</creatorcontrib><creatorcontrib>Su, Zhi</creatorcontrib><collection>CrossRef</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yongguang</au><au>Tian, Hualing</au><au>Cai, Yanjun</au><au>Wang, Yingbo</au><au>Yao, Xiang</au><au>Su, Zhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparing Li 6 V 3 (PO 4 ) 5 Cathode with Boron‐Doped Carbon Layer as a Cathode Material for Lithium‐Ion Batteries</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2024-07</date><risdate>2024</risdate><volume>12</volume><issue>7</issue><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>Polyanionic cathode materials are increasingly used in research because of their good cycling performance, high theoretical capacity, and high operating voltage. However, it exhibits poor performance due to its structure, which prevents it from reaching its full theoretical capacity. In this study, carbon‐coated Li 6 V 3 (PO 4 ) 5 @C cathode materials are constructed under Li 3 V 2 (PO 4 ) 3 research conditions using the sol–gel process and anhydrous citric acid as the carbon source. Several boron doping concentrations are investigated to create Li 6 V 3 (PO 4 ) 5 @BC cathode materials. The electrochemical measurements demonstrate that during the first cycle, at a current density of 0.5 C and a B doping quantity of 2 wt%, the specific discharge capacity of Li 6 V 3 (PO 4 ) 5 @BC reaches 167.43 mAh g −1 . The steady discharge specific capacity following 80 cycles of constant‐current charging and discharging is 136.84 mAh g −1 . Li 6 V 3 (PO 4 ) 5 @BC‐2 has a specific discharge capacity of 131.1 mAh g −1 at 2 C. The material's electrochemical performance greatly improves following the right quantity of B doping, which is primarily attributed to the increase in carbon layer defects brought on by B's entrance. This can increase the rate of lithium‐ion migration and hold more lithium ions.</abstract><doi>10.1002/ente.202301537</doi><orcidid>https://orcid.org/0000-0002-9948-3879</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-4288 |
ispartof | Energy technology (Weinheim, Germany), 2024-07, Vol.12 (7) |
issn | 2194-4288 2194-4296 |
language | eng |
recordid | cdi_crossref_primary_10_1002_ente_202301537 |
source | Access via Wiley Online Library |
title | Preparing Li 6 V 3 (PO 4 ) 5 Cathode with Boron‐Doped Carbon Layer as a Cathode Material for Lithium‐Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A47%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparing%20Li%206%20V%203%20(PO%204%20)%205%20Cathode%20with%20Boron%E2%80%90Doped%20Carbon%20Layer%20as%20a%20Cathode%20Material%20for%20Lithium%E2%80%90Ion%20Batteries&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Chen,%20Yongguang&rft.date=2024-07&rft.volume=12&rft.issue=7&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.202301537&rft_dat=%3Ccrossref%3E10_1002_ente_202301537%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |