Optimization of the separation of a group of triazine herbicides by micellar capillary electrophoresis using experimental design and artificial neural networks

The micellar electrokinetic chromatography separation of a group of triazine compounds was optimized using a combination of experimental design (ED) and artificial neural network (ANN). Different variables affecting separation were selected and used as input in the ANN. A chromatographic exponential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrophoresis 2004-04, Vol.25 (7-8), p.1042-1050
Hauptverfasser: Frías-García, Sergio, Sánchez, M. Jesús, Rodríguez- Delgado, Miguel Ángel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1050
container_issue 7-8
container_start_page 1042
container_title Electrophoresis
container_volume 25
creator Frías-García, Sergio
Sánchez, M. Jesús
Rodríguez- Delgado, Miguel Ángel
description The micellar electrokinetic chromatography separation of a group of triazine compounds was optimized using a combination of experimental design (ED) and artificial neural network (ANN). Different variables affecting separation were selected and used as input in the ANN. A chromatographic exponential function (CEF) combining resolution and separation time was used as output to obtain optimal separation conditions. An optimized buffer (19.3 mM sodium borate, 15.4 mM disodium hydrogen phosphate, 28.4 mM SDS, pH 9.45, and 7.5% 1‐propanol) provides the best separation with regard to resolution and separation time. Besides, an analysis of variance (ANOVA) approach of the MEKC separation, using the same variables, was developed, and the best capability of the combination of ED‐ANN for the optimization of the analytical methodology was demonstrated by comparing the results obtained from both approaches. In order to validate the proposed method, the different analytical parameters as repeatability and day‐to‐day precision were calculated. Finally, the optimized method was applied to the determination of these compounds in spiked and nonspiked ground water samples.
doi_str_mv 10.1002/elps.200305781
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_elps_200305781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ELPS200305781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3791-ec868c70255739fc7952f8323587b7025bbabcbccccb7c7cdd6c0655fc51d0d63</originalsourceid><addsrcrecordid>eNqFkMtOwzAURC0EgvLYskT-gRQ7juNkiSoISBVvxNKynZvWkCaWnaotP8OvklJU2OHNtcZzRteD0CklQ0pIfA61C8OYEEa4yOgOGlAex1GcZmwXDQgVLCIZ4wfoMIQ3QkiSJ8k-OqCc5DxJ0gH6vHOdndkP1dm2wW2FuyngAE75raLwxLdz9_3orfqwDeApeG2NLSFgvcIza6CulcdGObu-rDDUYDrfumnrIdiA58E2EwxLB97OoOlUjXvYThqsmhIr39mqz-vVBub-e3SL1r-HY7RXqTrAyc88Qi9Xl8-j62h8V9yMLsaRYSKnEZgszYwgMeeC5ZUROY-rjMWMZ0KvZa2VNtr0RwsjTFmmhqScV4bTkpQpO0LDTa7xbQgeKun6RfufSErkumm5blpum-6Bsw3g5noG5a_9p9rekG8MC1vD6p84eTm-f_obHm1YGzpYblnl32UqmODy9baQGS14MXp8kM_sCz26n7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization of the separation of a group of triazine herbicides by micellar capillary electrophoresis using experimental design and artificial neural networks</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Frías-García, Sergio ; Sánchez, M. Jesús ; Rodríguez- Delgado, Miguel Ángel</creator><creatorcontrib>Frías-García, Sergio ; Sánchez, M. Jesús ; Rodríguez- Delgado, Miguel Ángel</creatorcontrib><description>The micellar electrokinetic chromatography separation of a group of triazine compounds was optimized using a combination of experimental design (ED) and artificial neural network (ANN). Different variables affecting separation were selected and used as input in the ANN. A chromatographic exponential function (CEF) combining resolution and separation time was used as output to obtain optimal separation conditions. An optimized buffer (19.3 mM sodium borate, 15.4 mM disodium hydrogen phosphate, 28.4 mM SDS, pH 9.45, and 7.5% 1‐propanol) provides the best separation with regard to resolution and separation time. Besides, an analysis of variance (ANOVA) approach of the MEKC separation, using the same variables, was developed, and the best capability of the combination of ED‐ANN for the optimization of the analytical methodology was demonstrated by comparing the results obtained from both approaches. In order to validate the proposed method, the different analytical parameters as repeatability and day‐to‐day precision were calculated. Finally, the optimized method was applied to the determination of these compounds in spiked and nonspiked ground water samples.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.200305781</identifier><identifier>PMID: 15095446</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Artificial neural network ; Chromatography, Micellar Electrokinetic Capillary - methods ; Herbicides ; Herbicides - isolation &amp; purification ; Micellar electrokinetic chromatography ; Multivariate Analysis ; Neural Networks (Computer) ; Triazines - isolation &amp; purification</subject><ispartof>Electrophoresis, 2004-04, Vol.25 (7-8), p.1042-1050</ispartof><rights>Copyright © 2004 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3791-ec868c70255739fc7952f8323587b7025bbabcbccccb7c7cdd6c0655fc51d0d63</citedby><cites>FETCH-LOGICAL-c3791-ec868c70255739fc7952f8323587b7025bbabcbccccb7c7cdd6c0655fc51d0d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Felps.200305781$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Felps.200305781$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15095446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Frías-García, Sergio</creatorcontrib><creatorcontrib>Sánchez, M. Jesús</creatorcontrib><creatorcontrib>Rodríguez- Delgado, Miguel Ángel</creatorcontrib><title>Optimization of the separation of a group of triazine herbicides by micellar capillary electrophoresis using experimental design and artificial neural networks</title><title>Electrophoresis</title><addtitle>ELECTROPHORESIS</addtitle><description>The micellar electrokinetic chromatography separation of a group of triazine compounds was optimized using a combination of experimental design (ED) and artificial neural network (ANN). Different variables affecting separation were selected and used as input in the ANN. A chromatographic exponential function (CEF) combining resolution and separation time was used as output to obtain optimal separation conditions. An optimized buffer (19.3 mM sodium borate, 15.4 mM disodium hydrogen phosphate, 28.4 mM SDS, pH 9.45, and 7.5% 1‐propanol) provides the best separation with regard to resolution and separation time. Besides, an analysis of variance (ANOVA) approach of the MEKC separation, using the same variables, was developed, and the best capability of the combination of ED‐ANN for the optimization of the analytical methodology was demonstrated by comparing the results obtained from both approaches. In order to validate the proposed method, the different analytical parameters as repeatability and day‐to‐day precision were calculated. Finally, the optimized method was applied to the determination of these compounds in spiked and nonspiked ground water samples.</description><subject>Artificial neural network</subject><subject>Chromatography, Micellar Electrokinetic Capillary - methods</subject><subject>Herbicides</subject><subject>Herbicides - isolation &amp; purification</subject><subject>Micellar electrokinetic chromatography</subject><subject>Multivariate Analysis</subject><subject>Neural Networks (Computer)</subject><subject>Triazines - isolation &amp; purification</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAURC0EgvLYskT-gRQ7juNkiSoISBVvxNKynZvWkCaWnaotP8OvklJU2OHNtcZzRteD0CklQ0pIfA61C8OYEEa4yOgOGlAex1GcZmwXDQgVLCIZ4wfoMIQ3QkiSJ8k-OqCc5DxJ0gH6vHOdndkP1dm2wW2FuyngAE75raLwxLdz9_3orfqwDeApeG2NLSFgvcIza6CulcdGObu-rDDUYDrfumnrIdiA58E2EwxLB97OoOlUjXvYThqsmhIr39mqz-vVBub-e3SL1r-HY7RXqTrAyc88Qi9Xl8-j62h8V9yMLsaRYSKnEZgszYwgMeeC5ZUROY-rjMWMZ0KvZa2VNtr0RwsjTFmmhqScV4bTkpQpO0LDTa7xbQgeKun6RfufSErkumm5blpum-6Bsw3g5noG5a_9p9rekG8MC1vD6p84eTm-f_obHm1YGzpYblnl32UqmODy9baQGS14MXp8kM_sCz26n7g</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Frías-García, Sergio</creator><creator>Sánchez, M. Jesús</creator><creator>Rodríguez- Delgado, Miguel Ángel</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040401</creationdate><title>Optimization of the separation of a group of triazine herbicides by micellar capillary electrophoresis using experimental design and artificial neural networks</title><author>Frías-García, Sergio ; Sánchez, M. Jesús ; Rodríguez- Delgado, Miguel Ángel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3791-ec868c70255739fc7952f8323587b7025bbabcbccccb7c7cdd6c0655fc51d0d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Artificial neural network</topic><topic>Chromatography, Micellar Electrokinetic Capillary - methods</topic><topic>Herbicides</topic><topic>Herbicides - isolation &amp; purification</topic><topic>Micellar electrokinetic chromatography</topic><topic>Multivariate Analysis</topic><topic>Neural Networks (Computer)</topic><topic>Triazines - isolation &amp; purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frías-García, Sergio</creatorcontrib><creatorcontrib>Sánchez, M. Jesús</creatorcontrib><creatorcontrib>Rodríguez- Delgado, Miguel Ángel</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frías-García, Sergio</au><au>Sánchez, M. Jesús</au><au>Rodríguez- Delgado, Miguel Ángel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of the separation of a group of triazine herbicides by micellar capillary electrophoresis using experimental design and artificial neural networks</atitle><jtitle>Electrophoresis</jtitle><addtitle>ELECTROPHORESIS</addtitle><date>2004-04-01</date><risdate>2004</risdate><volume>25</volume><issue>7-8</issue><spage>1042</spage><epage>1050</epage><pages>1042-1050</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>The micellar electrokinetic chromatography separation of a group of triazine compounds was optimized using a combination of experimental design (ED) and artificial neural network (ANN). Different variables affecting separation were selected and used as input in the ANN. A chromatographic exponential function (CEF) combining resolution and separation time was used as output to obtain optimal separation conditions. An optimized buffer (19.3 mM sodium borate, 15.4 mM disodium hydrogen phosphate, 28.4 mM SDS, pH 9.45, and 7.5% 1‐propanol) provides the best separation with regard to resolution and separation time. Besides, an analysis of variance (ANOVA) approach of the MEKC separation, using the same variables, was developed, and the best capability of the combination of ED‐ANN for the optimization of the analytical methodology was demonstrated by comparing the results obtained from both approaches. In order to validate the proposed method, the different analytical parameters as repeatability and day‐to‐day precision were calculated. Finally, the optimized method was applied to the determination of these compounds in spiked and nonspiked ground water samples.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>15095446</pmid><doi>10.1002/elps.200305781</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0173-0835
ispartof Electrophoresis, 2004-04, Vol.25 (7-8), p.1042-1050
issn 0173-0835
1522-2683
language eng
recordid cdi_crossref_primary_10_1002_elps_200305781
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Artificial neural network
Chromatography, Micellar Electrokinetic Capillary - methods
Herbicides
Herbicides - isolation & purification
Micellar electrokinetic chromatography
Multivariate Analysis
Neural Networks (Computer)
Triazines - isolation & purification
title Optimization of the separation of a group of triazine herbicides by micellar capillary electrophoresis using experimental design and artificial neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20the%20separation%20of%20a%20group%20of%20triazine%20herbicides%20by%20micellar%20capillary%20electrophoresis%20using%20experimental%20design%20and%20artificial%20neural%20networks&rft.jtitle=Electrophoresis&rft.au=Fr%C3%ADas-Garc%C3%ADa,%20Sergio&rft.date=2004-04-01&rft.volume=25&rft.issue=7-8&rft.spage=1042&rft.epage=1050&rft.pages=1042-1050&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.200305781&rft_dat=%3Cwiley_cross%3EELPS200305781%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/15095446&rfr_iscdi=true