Optimization of the separation of a group of triazine herbicides by micellar capillary electrophoresis using experimental design and artificial neural networks
The micellar electrokinetic chromatography separation of a group of triazine compounds was optimized using a combination of experimental design (ED) and artificial neural network (ANN). Different variables affecting separation were selected and used as input in the ANN. A chromatographic exponential...
Gespeichert in:
Veröffentlicht in: | Electrophoresis 2004-04, Vol.25 (7-8), p.1042-1050 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1050 |
---|---|
container_issue | 7-8 |
container_start_page | 1042 |
container_title | Electrophoresis |
container_volume | 25 |
creator | Frías-García, Sergio Sánchez, M. Jesús Rodríguez- Delgado, Miguel Ángel |
description | The micellar electrokinetic chromatography separation of a group of triazine compounds was optimized using a combination of experimental design (ED) and artificial neural network (ANN). Different variables affecting separation were selected and used as input in the ANN. A chromatographic exponential function (CEF) combining resolution and separation time was used as output to obtain optimal separation conditions. An optimized buffer (19.3 mM sodium borate, 15.4 mM disodium hydrogen phosphate, 28.4 mM SDS, pH 9.45, and 7.5% 1‐propanol) provides the best separation with regard to resolution and separation time. Besides, an analysis of variance (ANOVA) approach of the MEKC separation, using the same variables, was developed, and the best capability of the combination of ED‐ANN for the optimization of the analytical methodology was demonstrated by comparing the results obtained from both approaches. In order to validate the proposed method, the different analytical parameters as repeatability and day‐to‐day precision were calculated. Finally, the optimized method was applied to the determination of these compounds in spiked and nonspiked ground water samples. |
doi_str_mv | 10.1002/elps.200305781 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_elps_200305781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ELPS200305781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3791-ec868c70255739fc7952f8323587b7025bbabcbccccb7c7cdd6c0655fc51d0d63</originalsourceid><addsrcrecordid>eNqFkMtOwzAURC0EgvLYskT-gRQ7juNkiSoISBVvxNKynZvWkCaWnaotP8OvklJU2OHNtcZzRteD0CklQ0pIfA61C8OYEEa4yOgOGlAex1GcZmwXDQgVLCIZ4wfoMIQ3QkiSJ8k-OqCc5DxJ0gH6vHOdndkP1dm2wW2FuyngAE75raLwxLdz9_3orfqwDeApeG2NLSFgvcIza6CulcdGObu-rDDUYDrfumnrIdiA58E2EwxLB97OoOlUjXvYThqsmhIr39mqz-vVBub-e3SL1r-HY7RXqTrAyc88Qi9Xl8-j62h8V9yMLsaRYSKnEZgszYwgMeeC5ZUROY-rjMWMZ0KvZa2VNtr0RwsjTFmmhqScV4bTkpQpO0LDTa7xbQgeKun6RfufSErkumm5blpum-6Bsw3g5noG5a_9p9rekG8MC1vD6p84eTm-f_obHm1YGzpYblnl32UqmODy9baQGS14MXp8kM_sCz26n7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization of the separation of a group of triazine herbicides by micellar capillary electrophoresis using experimental design and artificial neural networks</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Frías-García, Sergio ; Sánchez, M. Jesús ; Rodríguez- Delgado, Miguel Ángel</creator><creatorcontrib>Frías-García, Sergio ; Sánchez, M. Jesús ; Rodríguez- Delgado, Miguel Ángel</creatorcontrib><description>The micellar electrokinetic chromatography separation of a group of triazine compounds was optimized using a combination of experimental design (ED) and artificial neural network (ANN). Different variables affecting separation were selected and used as input in the ANN. A chromatographic exponential function (CEF) combining resolution and separation time was used as output to obtain optimal separation conditions. An optimized buffer (19.3 mM sodium borate, 15.4 mM disodium hydrogen phosphate, 28.4 mM SDS, pH 9.45, and 7.5% 1‐propanol) provides the best separation with regard to resolution and separation time. Besides, an analysis of variance (ANOVA) approach of the MEKC separation, using the same variables, was developed, and the best capability of the combination of ED‐ANN for the optimization of the analytical methodology was demonstrated by comparing the results obtained from both approaches. In order to validate the proposed method, the different analytical parameters as repeatability and day‐to‐day precision were calculated. Finally, the optimized method was applied to the determination of these compounds in spiked and nonspiked ground water samples.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.200305781</identifier><identifier>PMID: 15095446</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Artificial neural network ; Chromatography, Micellar Electrokinetic Capillary - methods ; Herbicides ; Herbicides - isolation & purification ; Micellar electrokinetic chromatography ; Multivariate Analysis ; Neural Networks (Computer) ; Triazines - isolation & purification</subject><ispartof>Electrophoresis, 2004-04, Vol.25 (7-8), p.1042-1050</ispartof><rights>Copyright © 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3791-ec868c70255739fc7952f8323587b7025bbabcbccccb7c7cdd6c0655fc51d0d63</citedby><cites>FETCH-LOGICAL-c3791-ec868c70255739fc7952f8323587b7025bbabcbccccb7c7cdd6c0655fc51d0d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Felps.200305781$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Felps.200305781$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15095446$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Frías-García, Sergio</creatorcontrib><creatorcontrib>Sánchez, M. Jesús</creatorcontrib><creatorcontrib>Rodríguez- Delgado, Miguel Ángel</creatorcontrib><title>Optimization of the separation of a group of triazine herbicides by micellar capillary electrophoresis using experimental design and artificial neural networks</title><title>Electrophoresis</title><addtitle>ELECTROPHORESIS</addtitle><description>The micellar electrokinetic chromatography separation of a group of triazine compounds was optimized using a combination of experimental design (ED) and artificial neural network (ANN). Different variables affecting separation were selected and used as input in the ANN. A chromatographic exponential function (CEF) combining resolution and separation time was used as output to obtain optimal separation conditions. An optimized buffer (19.3 mM sodium borate, 15.4 mM disodium hydrogen phosphate, 28.4 mM SDS, pH 9.45, and 7.5% 1‐propanol) provides the best separation with regard to resolution and separation time. Besides, an analysis of variance (ANOVA) approach of the MEKC separation, using the same variables, was developed, and the best capability of the combination of ED‐ANN for the optimization of the analytical methodology was demonstrated by comparing the results obtained from both approaches. In order to validate the proposed method, the different analytical parameters as repeatability and day‐to‐day precision were calculated. Finally, the optimized method was applied to the determination of these compounds in spiked and nonspiked ground water samples.</description><subject>Artificial neural network</subject><subject>Chromatography, Micellar Electrokinetic Capillary - methods</subject><subject>Herbicides</subject><subject>Herbicides - isolation & purification</subject><subject>Micellar electrokinetic chromatography</subject><subject>Multivariate Analysis</subject><subject>Neural Networks (Computer)</subject><subject>Triazines - isolation & purification</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAURC0EgvLYskT-gRQ7juNkiSoISBVvxNKynZvWkCaWnaotP8OvklJU2OHNtcZzRteD0CklQ0pIfA61C8OYEEa4yOgOGlAex1GcZmwXDQgVLCIZ4wfoMIQ3QkiSJ8k-OqCc5DxJ0gH6vHOdndkP1dm2wW2FuyngAE75raLwxLdz9_3orfqwDeApeG2NLSFgvcIza6CulcdGObu-rDDUYDrfumnrIdiA58E2EwxLB97OoOlUjXvYThqsmhIr39mqz-vVBub-e3SL1r-HY7RXqTrAyc88Qi9Xl8-j62h8V9yMLsaRYSKnEZgszYwgMeeC5ZUROY-rjMWMZ0KvZa2VNtr0RwsjTFmmhqScV4bTkpQpO0LDTa7xbQgeKun6RfufSErkumm5blpum-6Bsw3g5noG5a_9p9rekG8MC1vD6p84eTm-f_obHm1YGzpYblnl32UqmODy9baQGS14MXp8kM_sCz26n7g</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Frías-García, Sergio</creator><creator>Sánchez, M. Jesús</creator><creator>Rodríguez- Delgado, Miguel Ángel</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20040401</creationdate><title>Optimization of the separation of a group of triazine herbicides by micellar capillary electrophoresis using experimental design and artificial neural networks</title><author>Frías-García, Sergio ; Sánchez, M. Jesús ; Rodríguez- Delgado, Miguel Ángel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3791-ec868c70255739fc7952f8323587b7025bbabcbccccb7c7cdd6c0655fc51d0d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Artificial neural network</topic><topic>Chromatography, Micellar Electrokinetic Capillary - methods</topic><topic>Herbicides</topic><topic>Herbicides - isolation & purification</topic><topic>Micellar electrokinetic chromatography</topic><topic>Multivariate Analysis</topic><topic>Neural Networks (Computer)</topic><topic>Triazines - isolation & purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frías-García, Sergio</creatorcontrib><creatorcontrib>Sánchez, M. Jesús</creatorcontrib><creatorcontrib>Rodríguez- Delgado, Miguel Ángel</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frías-García, Sergio</au><au>Sánchez, M. Jesús</au><au>Rodríguez- Delgado, Miguel Ángel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of the separation of a group of triazine herbicides by micellar capillary electrophoresis using experimental design and artificial neural networks</atitle><jtitle>Electrophoresis</jtitle><addtitle>ELECTROPHORESIS</addtitle><date>2004-04-01</date><risdate>2004</risdate><volume>25</volume><issue>7-8</issue><spage>1042</spage><epage>1050</epage><pages>1042-1050</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>The micellar electrokinetic chromatography separation of a group of triazine compounds was optimized using a combination of experimental design (ED) and artificial neural network (ANN). Different variables affecting separation were selected and used as input in the ANN. A chromatographic exponential function (CEF) combining resolution and separation time was used as output to obtain optimal separation conditions. An optimized buffer (19.3 mM sodium borate, 15.4 mM disodium hydrogen phosphate, 28.4 mM SDS, pH 9.45, and 7.5% 1‐propanol) provides the best separation with regard to resolution and separation time. Besides, an analysis of variance (ANOVA) approach of the MEKC separation, using the same variables, was developed, and the best capability of the combination of ED‐ANN for the optimization of the analytical methodology was demonstrated by comparing the results obtained from both approaches. In order to validate the proposed method, the different analytical parameters as repeatability and day‐to‐day precision were calculated. Finally, the optimized method was applied to the determination of these compounds in spiked and nonspiked ground water samples.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>15095446</pmid><doi>10.1002/elps.200305781</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0173-0835 |
ispartof | Electrophoresis, 2004-04, Vol.25 (7-8), p.1042-1050 |
issn | 0173-0835 1522-2683 |
language | eng |
recordid | cdi_crossref_primary_10_1002_elps_200305781 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Artificial neural network Chromatography, Micellar Electrokinetic Capillary - methods Herbicides Herbicides - isolation & purification Micellar electrokinetic chromatography Multivariate Analysis Neural Networks (Computer) Triazines - isolation & purification |
title | Optimization of the separation of a group of triazine herbicides by micellar capillary electrophoresis using experimental design and artificial neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T05%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20the%20separation%20of%20a%20group%20of%20triazine%20herbicides%20by%20micellar%20capillary%20electrophoresis%20using%20experimental%20design%20and%20artificial%20neural%20networks&rft.jtitle=Electrophoresis&rft.au=Fr%C3%ADas-Garc%C3%ADa,%20Sergio&rft.date=2004-04-01&rft.volume=25&rft.issue=7-8&rft.spage=1042&rft.epage=1050&rft.pages=1042-1050&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.200305781&rft_dat=%3Cwiley_cross%3EELPS200305781%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/15095446&rfr_iscdi=true |