Description of Complex Fluids Electrochemical Data in the Frame of Percolation Model

In the paper, the percolation model (PM) developed earlier for description of data associated with complex fluids was successfully applied. As an example, we analyzed the virgin olive oil electrochemical data. In spite of the fact that this complex fluid as olive oil contains more than 100 different...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electroanalysis (New York, N.Y.) N.Y.), 2018-09, Vol.30 (9), p.2053-2065
Hauptverfasser: R. Nigmatullin, Raoul, Sidelnikov, Artem V., Budnikov, Herman C., Maksyutova, Elza I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2065
container_issue 9
container_start_page 2053
container_title Electroanalysis (New York, N.Y.)
container_volume 30
creator R. Nigmatullin, Raoul
Sidelnikov, Artem V.
Budnikov, Herman C.
Maksyutova, Elza I.
description In the paper, the percolation model (PM) developed earlier for description of data associated with complex fluids was successfully applied. As an example, we analyzed the virgin olive oil electrochemical data. In spite of the fact that this complex fluid as olive oil contains more than 100 different chemical components, it becomes possible to describe the dependencies J(U) (defined in electrochemistry as the voltammograms (VAGs)) in terms of the percolation model. This model takes into account the behavior of the conducting/percolation currents in meso‐region and dependencies of the fractal dimension versus applied potential U. It was proved that this model was applicable for three basic regions: cathode region (where positive charges are mainly concentrated), capacitor (Faraday) region and anode region (where negative charges were mainly located). For these three basic conventional regions known in electrochemistry, we obtained the excellent coincidence of the fitting function obtained in the frame of PM with experimental data. These results prove that this meso‐model can be applicable for description of wide set of data including different complex solutions and fluids.
doi_str_mv 10.1002/elan.201800264
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_elan_201800264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ELAN201800264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2894-f901f41cbcf1dc95a035c845094b045612597959f7822d59f406bba61fba5b8a3</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqWwMvsPJDy7dhKPVZtSpPAxlDlyHFs1cuLKDoL-exKKYGS670n33OEgdEsgJQD0TjvZpxRIMT4ZO0MzwilJGAFxPt7AIIGFyC_RVYxvACAyJmZot9ZRBXsYrO-xN3jlu4PTn3jj3m0bcem0GoJXe91ZJR1ey0Fi2-Nhr_EmyE5PzIsOyjv5PfHoW-2u0YWRLuqbn5yj1025W22T6vn-YbWsEkULwRIjgBhGVKMMaZXgEhZcFYyDYA0wnhHKRS64MHlBaTsmg6xpZEZMI3lTyMUcpaddFXyMQZv6EGwnw7EmUE9O6slJ_etkBMQJ-LBOH_9p12W1fPpjvwBGdGWP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Description of Complex Fluids Electrochemical Data in the Frame of Percolation Model</title><source>Access via Wiley Online Library</source><creator>R. Nigmatullin, Raoul ; Sidelnikov, Artem V. ; Budnikov, Herman C. ; Maksyutova, Elza I.</creator><creatorcontrib>R. Nigmatullin, Raoul ; Sidelnikov, Artem V. ; Budnikov, Herman C. ; Maksyutova, Elza I.</creatorcontrib><description>In the paper, the percolation model (PM) developed earlier for description of data associated with complex fluids was successfully applied. As an example, we analyzed the virgin olive oil electrochemical data. In spite of the fact that this complex fluid as olive oil contains more than 100 different chemical components, it becomes possible to describe the dependencies J(U) (defined in electrochemistry as the voltammograms (VAGs)) in terms of the percolation model. This model takes into account the behavior of the conducting/percolation currents in meso‐region and dependencies of the fractal dimension versus applied potential U. It was proved that this model was applicable for three basic regions: cathode region (where positive charges are mainly concentrated), capacitor (Faraday) region and anode region (where negative charges were mainly located). For these three basic conventional regions known in electrochemistry, we obtained the excellent coincidence of the fitting function obtained in the frame of PM with experimental data. These results prove that this meso‐model can be applicable for description of wide set of data including different complex solutions and fluids.</description><identifier>ISSN: 1040-0397</identifier><identifier>EISSN: 1521-4109</identifier><identifier>DOI: 10.1002/elan.201800264</identifier><language>eng</language><subject>Fractal Dimension ; Multisensor System ; Percolation Model ; Voltammetry</subject><ispartof>Electroanalysis (New York, N.Y.), 2018-09, Vol.30 (9), p.2053-2065</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2894-f901f41cbcf1dc95a035c845094b045612597959f7822d59f406bba61fba5b8a3</citedby><cites>FETCH-LOGICAL-c2894-f901f41cbcf1dc95a035c845094b045612597959f7822d59f406bba61fba5b8a3</cites><orcidid>0000-0002-6787-199X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Felan.201800264$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Felan.201800264$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>R. Nigmatullin, Raoul</creatorcontrib><creatorcontrib>Sidelnikov, Artem V.</creatorcontrib><creatorcontrib>Budnikov, Herman C.</creatorcontrib><creatorcontrib>Maksyutova, Elza I.</creatorcontrib><title>Description of Complex Fluids Electrochemical Data in the Frame of Percolation Model</title><title>Electroanalysis (New York, N.Y.)</title><description>In the paper, the percolation model (PM) developed earlier for description of data associated with complex fluids was successfully applied. As an example, we analyzed the virgin olive oil electrochemical data. In spite of the fact that this complex fluid as olive oil contains more than 100 different chemical components, it becomes possible to describe the dependencies J(U) (defined in electrochemistry as the voltammograms (VAGs)) in terms of the percolation model. This model takes into account the behavior of the conducting/percolation currents in meso‐region and dependencies of the fractal dimension versus applied potential U. It was proved that this model was applicable for three basic regions: cathode region (where positive charges are mainly concentrated), capacitor (Faraday) region and anode region (where negative charges were mainly located). For these three basic conventional regions known in electrochemistry, we obtained the excellent coincidence of the fitting function obtained in the frame of PM with experimental data. These results prove that this meso‐model can be applicable for description of wide set of data including different complex solutions and fluids.</description><subject>Fractal Dimension</subject><subject>Multisensor System</subject><subject>Percolation Model</subject><subject>Voltammetry</subject><issn>1040-0397</issn><issn>1521-4109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURS0EEqWwMvsPJDy7dhKPVZtSpPAxlDlyHFs1cuLKDoL-exKKYGS670n33OEgdEsgJQD0TjvZpxRIMT4ZO0MzwilJGAFxPt7AIIGFyC_RVYxvACAyJmZot9ZRBXsYrO-xN3jlu4PTn3jj3m0bcem0GoJXe91ZJR1ey0Fi2-Nhr_EmyE5PzIsOyjv5PfHoW-2u0YWRLuqbn5yj1025W22T6vn-YbWsEkULwRIjgBhGVKMMaZXgEhZcFYyDYA0wnhHKRS64MHlBaTsmg6xpZEZMI3lTyMUcpaddFXyMQZv6EGwnw7EmUE9O6slJ_etkBMQJ-LBOH_9p12W1fPpjvwBGdGWP</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>R. Nigmatullin, Raoul</creator><creator>Sidelnikov, Artem V.</creator><creator>Budnikov, Herman C.</creator><creator>Maksyutova, Elza I.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6787-199X</orcidid></search><sort><creationdate>201809</creationdate><title>Description of Complex Fluids Electrochemical Data in the Frame of Percolation Model</title><author>R. Nigmatullin, Raoul ; Sidelnikov, Artem V. ; Budnikov, Herman C. ; Maksyutova, Elza I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2894-f901f41cbcf1dc95a035c845094b045612597959f7822d59f406bba61fba5b8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Fractal Dimension</topic><topic>Multisensor System</topic><topic>Percolation Model</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>R. Nigmatullin, Raoul</creatorcontrib><creatorcontrib>Sidelnikov, Artem V.</creatorcontrib><creatorcontrib>Budnikov, Herman C.</creatorcontrib><creatorcontrib>Maksyutova, Elza I.</creatorcontrib><collection>CrossRef</collection><jtitle>Electroanalysis (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>R. Nigmatullin, Raoul</au><au>Sidelnikov, Artem V.</au><au>Budnikov, Herman C.</au><au>Maksyutova, Elza I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Description of Complex Fluids Electrochemical Data in the Frame of Percolation Model</atitle><jtitle>Electroanalysis (New York, N.Y.)</jtitle><date>2018-09</date><risdate>2018</risdate><volume>30</volume><issue>9</issue><spage>2053</spage><epage>2065</epage><pages>2053-2065</pages><issn>1040-0397</issn><eissn>1521-4109</eissn><abstract>In the paper, the percolation model (PM) developed earlier for description of data associated with complex fluids was successfully applied. As an example, we analyzed the virgin olive oil electrochemical data. In spite of the fact that this complex fluid as olive oil contains more than 100 different chemical components, it becomes possible to describe the dependencies J(U) (defined in electrochemistry as the voltammograms (VAGs)) in terms of the percolation model. This model takes into account the behavior of the conducting/percolation currents in meso‐region and dependencies of the fractal dimension versus applied potential U. It was proved that this model was applicable for three basic regions: cathode region (where positive charges are mainly concentrated), capacitor (Faraday) region and anode region (where negative charges were mainly located). For these three basic conventional regions known in electrochemistry, we obtained the excellent coincidence of the fitting function obtained in the frame of PM with experimental data. These results prove that this meso‐model can be applicable for description of wide set of data including different complex solutions and fluids.</abstract><doi>10.1002/elan.201800264</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6787-199X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1040-0397
ispartof Electroanalysis (New York, N.Y.), 2018-09, Vol.30 (9), p.2053-2065
issn 1040-0397
1521-4109
language eng
recordid cdi_crossref_primary_10_1002_elan_201800264
source Access via Wiley Online Library
subjects Fractal Dimension
Multisensor System
Percolation Model
Voltammetry
title Description of Complex Fluids Electrochemical Data in the Frame of Percolation Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T12%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Description%20of%20Complex%20Fluids%20Electrochemical%20Data%20in%20the%20Frame%20of%20Percolation%20Model&rft.jtitle=Electroanalysis%20(New%20York,%20N.Y.)&rft.au=R.%E2%80%85Nigmatullin,%20Raoul&rft.date=2018-09&rft.volume=30&rft.issue=9&rft.spage=2053&rft.epage=2065&rft.pages=2053-2065&rft.issn=1040-0397&rft.eissn=1521-4109&rft_id=info:doi/10.1002/elan.201800264&rft_dat=%3Cwiley_cross%3EELAN201800264%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true