Enantioselective Synthesis, Configurational Stability, and Reactivity of Lithium α-tert-Butylsulfonyl Carbanion Salts

The reactions of enantiopure S‐tert‐butyl sulfones of the type R1CH(R2)SO2tBu (≥99 % ee) with lithiumorganyl compounds gave the corresponding chiral α‐sulfonyl carbanion salts [R1C(R2)SO2tBu]Li with ≥94 % ee. The enantioselectivity of the deprotonation of the phenyl‐ but not dialkyl‐substituted sulf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European Journal of Organic Chemistry 2010-08, Vol.2010 (24), p.4588-4616
Hauptverfasser: Scholz, Roland, Hellmann, Gunther, Rohs, Susanne, Özdemir, Diana, Raabe, Gerhard, Vermeeren, Cornelia, Gais, Hans-Joachim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4616
container_issue 24
container_start_page 4588
container_title European Journal of Organic Chemistry
container_volume 2010
creator Scholz, Roland
Hellmann, Gunther
Rohs, Susanne
Özdemir, Diana
Raabe, Gerhard
Vermeeren, Cornelia
Gais, Hans-Joachim
description The reactions of enantiopure S‐tert‐butyl sulfones of the type R1CH(R2)SO2tBu (≥99 % ee) with lithiumorganyl compounds gave the corresponding chiral α‐sulfonyl carbanion salts [R1C(R2)SO2tBu]Li with ≥94 % ee. The enantioselectivity of the deprotonation of the phenyl‐ but not dialkyl‐substituted sulfones is strongly dependent on the nature of the lithiumorganyl. Because of this observation and the strong decrease in enantioselectivity in the presence of TMEDA and HMPA, we propose an intramolecular proton transfer following complexation of the sulfone by RLi. Racemization of [R1C(R2)SO2tBu]Li follows first‐order kinetics and seems to be mainly an enthalpic process with a small negative activation entropy, as revealed by polarimetric measurements at low temperatures. This is in accordance with Cα–S bond rotation as the rate‐determining step. The salts [R1C(R2)SO2tBu]Li have half‐lives of racemization in the order of several hours at –105 °C. The deuteriation of the salts at –105 °C with CF3CO2D proceeded with enantioselectivities of ≥94 % ee, the magnitude of which was not significantly affected by the presence of TMEDA and HMPA. The salts also reacted with carbon‐based electrophiles at low temperatures with high enantioselectivity. The conversion of R1CH(R2)SO2tBu via [R1C(R2)SO2tBu]Li to R1C(R2,E)SO2tBu, which involves the loss of stereogenicity at the α‐stereogenic center and its re‐establishment upon reaction of the chiral carbanion with electrophiles, occurred with high overall enantioselectivity. Electrophiles attack the anionic C atom of [R1C(R2)SO2tBu]Li with high selectivity on the side syn to the O atoms and anti to the tert‐butyl group. The reactivity of the dialkyl‐substituted salts [R1C(R2)SO2tBu]Li (R1, R2 = alkyl) is significantly higher than that of the benzylic salts [RC(Ph)SO2tBu]Li (R = alkyl) and the HMPA‐coordinated SIPs of [MeC(Ph)SO2tBu]Li are significantly more reactive towards EtI than the corresponding O–Li contact ion pairs. Deprotonation of chiral S‐tert‐butyl sulfones with tBuLi gives enantiomerically highly enriched lithium α‐tert‐butylsulfonyl carbanion salts that are configurationally stable at –105 °C in the timescale of their synthesis and reactions with electrophiles. They react at low temperatures with electrophiles with high enantioselectivity.
doi_str_mv 10.1002/ejoc.201000410
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_ejoc_201000410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_0JSS2FXM_B</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3570-4ea615097f470fcb30d5c8e413a09646e9edc020117004ab3a8fb618d3d3eb003</originalsourceid><addsrcrecordid>eNqFkMtOIzEQRVsjkIbXdtbesKNDOe5HegmthIfCIE2DyM6qdtsTg3Ej2wH6s_gRvglHGUXsZlVV0j23qm6S_KIwogDjU_nYi9EYYg8ZhR_JHoWqSqGoYCf2GctSWrHFz2Tf-8eoqYqC7iWvU4s26N5LI0XQr5I0gw1L6bU_IXVvlf67chgFFg1pArba6DCcELQd-SNxjcSZ9IrMdVjq1TP5_EiDdCE9X4XB-JVRvR0MqdG1aKMNadAEf5jsKjReHv2rB8n9bHpXX6bz24ur-myeCpaXkGYSC5pDVaqsBCVaBl0uJjKjDOP9WSEr2QmIP9MyPo0tw4lqCzrpWMdkC8AOktHGV7jeeycVf3H6Gd3AKfB1anydGt-mFoHjDfCCXqBRDq3QfkuNWVxV5DTqqo3uTRs5_MeVT69v6-870g2rfZDvWxbdEy9KVub84fcFh-umGc8WN_ycfQEtCJBL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enantioselective Synthesis, Configurational Stability, and Reactivity of Lithium α-tert-Butylsulfonyl Carbanion Salts</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Scholz, Roland ; Hellmann, Gunther ; Rohs, Susanne ; Özdemir, Diana ; Raabe, Gerhard ; Vermeeren, Cornelia ; Gais, Hans-Joachim</creator><creatorcontrib>Scholz, Roland ; Hellmann, Gunther ; Rohs, Susanne ; Özdemir, Diana ; Raabe, Gerhard ; Vermeeren, Cornelia ; Gais, Hans-Joachim</creatorcontrib><description>The reactions of enantiopure S‐tert‐butyl sulfones of the type R1CH(R2)SO2tBu (≥99 % ee) with lithiumorganyl compounds gave the corresponding chiral α‐sulfonyl carbanion salts [R1C(R2)SO2tBu]Li with ≥94 % ee. The enantioselectivity of the deprotonation of the phenyl‐ but not dialkyl‐substituted sulfones is strongly dependent on the nature of the lithiumorganyl. Because of this observation and the strong decrease in enantioselectivity in the presence of TMEDA and HMPA, we propose an intramolecular proton transfer following complexation of the sulfone by RLi. Racemization of [R1C(R2)SO2tBu]Li follows first‐order kinetics and seems to be mainly an enthalpic process with a small negative activation entropy, as revealed by polarimetric measurements at low temperatures. This is in accordance with Cα–S bond rotation as the rate‐determining step. The salts [R1C(R2)SO2tBu]Li have half‐lives of racemization in the order of several hours at –105 °C. The deuteriation of the salts at –105 °C with CF3CO2D proceeded with enantioselectivities of ≥94 % ee, the magnitude of which was not significantly affected by the presence of TMEDA and HMPA. The salts also reacted with carbon‐based electrophiles at low temperatures with high enantioselectivity. The conversion of R1CH(R2)SO2tBu via [R1C(R2)SO2tBu]Li to R1C(R2,E)SO2tBu, which involves the loss of stereogenicity at the α‐stereogenic center and its re‐establishment upon reaction of the chiral carbanion with electrophiles, occurred with high overall enantioselectivity. Electrophiles attack the anionic C atom of [R1C(R2)SO2tBu]Li with high selectivity on the side syn to the O atoms and anti to the tert‐butyl group. The reactivity of the dialkyl‐substituted salts [R1C(R2)SO2tBu]Li (R1, R2 = alkyl) is significantly higher than that of the benzylic salts [RC(Ph)SO2tBu]Li (R = alkyl) and the HMPA‐coordinated SIPs of [MeC(Ph)SO2tBu]Li are significantly more reactive towards EtI than the corresponding O–Li contact ion pairs. Deprotonation of chiral S‐tert‐butyl sulfones with tBuLi gives enantiomerically highly enriched lithium α‐tert‐butylsulfonyl carbanion salts that are configurationally stable at –105 °C in the timescale of their synthesis and reactions with electrophiles. They react at low temperatures with electrophiles with high enantioselectivity.</description><identifier>ISSN: 1434-193X</identifier><identifier>EISSN: 1099-0690</identifier><identifier>DOI: 10.1002/ejoc.201000410</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Alkylation ; Carbanions ; Chemical reactivity ; Chemistry ; Chirality ; Coordination compounds ; Enantioselectivity ; Exact sciences and technology ; Inorganic chemistry and origins of life ; Kinetics and mechanisms ; Organic chemistry ; Preparations and properties ; Racemi­zation ; Reactivity and mechanisms</subject><ispartof>European Journal of Organic Chemistry, 2010-08, Vol.2010 (24), p.4588-4616</ispartof><rights>Copyright © 2010 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3570-4ea615097f470fcb30d5c8e413a09646e9edc020117004ab3a8fb618d3d3eb003</citedby><cites>FETCH-LOGICAL-c3570-4ea615097f470fcb30d5c8e413a09646e9edc020117004ab3a8fb618d3d3eb003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fejoc.201000410$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fejoc.201000410$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>313,314,776,780,788,1411,27899,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23117651$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Scholz, Roland</creatorcontrib><creatorcontrib>Hellmann, Gunther</creatorcontrib><creatorcontrib>Rohs, Susanne</creatorcontrib><creatorcontrib>Özdemir, Diana</creatorcontrib><creatorcontrib>Raabe, Gerhard</creatorcontrib><creatorcontrib>Vermeeren, Cornelia</creatorcontrib><creatorcontrib>Gais, Hans-Joachim</creatorcontrib><title>Enantioselective Synthesis, Configurational Stability, and Reactivity of Lithium α-tert-Butylsulfonyl Carbanion Salts</title><title>European Journal of Organic Chemistry</title><addtitle>Eur. J. Org. Chem</addtitle><description>The reactions of enantiopure S‐tert‐butyl sulfones of the type R1CH(R2)SO2tBu (≥99 % ee) with lithiumorganyl compounds gave the corresponding chiral α‐sulfonyl carbanion salts [R1C(R2)SO2tBu]Li with ≥94 % ee. The enantioselectivity of the deprotonation of the phenyl‐ but not dialkyl‐substituted sulfones is strongly dependent on the nature of the lithiumorganyl. Because of this observation and the strong decrease in enantioselectivity in the presence of TMEDA and HMPA, we propose an intramolecular proton transfer following complexation of the sulfone by RLi. Racemization of [R1C(R2)SO2tBu]Li follows first‐order kinetics and seems to be mainly an enthalpic process with a small negative activation entropy, as revealed by polarimetric measurements at low temperatures. This is in accordance with Cα–S bond rotation as the rate‐determining step. The salts [R1C(R2)SO2tBu]Li have half‐lives of racemization in the order of several hours at –105 °C. The deuteriation of the salts at –105 °C with CF3CO2D proceeded with enantioselectivities of ≥94 % ee, the magnitude of which was not significantly affected by the presence of TMEDA and HMPA. The salts also reacted with carbon‐based electrophiles at low temperatures with high enantioselectivity. The conversion of R1CH(R2)SO2tBu via [R1C(R2)SO2tBu]Li to R1C(R2,E)SO2tBu, which involves the loss of stereogenicity at the α‐stereogenic center and its re‐establishment upon reaction of the chiral carbanion with electrophiles, occurred with high overall enantioselectivity. Electrophiles attack the anionic C atom of [R1C(R2)SO2tBu]Li with high selectivity on the side syn to the O atoms and anti to the tert‐butyl group. The reactivity of the dialkyl‐substituted salts [R1C(R2)SO2tBu]Li (R1, R2 = alkyl) is significantly higher than that of the benzylic salts [RC(Ph)SO2tBu]Li (R = alkyl) and the HMPA‐coordinated SIPs of [MeC(Ph)SO2tBu]Li are significantly more reactive towards EtI than the corresponding O–Li contact ion pairs. Deprotonation of chiral S‐tert‐butyl sulfones with tBuLi gives enantiomerically highly enriched lithium α‐tert‐butylsulfonyl carbanion salts that are configurationally stable at –105 °C in the timescale of their synthesis and reactions with electrophiles. They react at low temperatures with electrophiles with high enantioselectivity.</description><subject>Alkylation</subject><subject>Carbanions</subject><subject>Chemical reactivity</subject><subject>Chemistry</subject><subject>Chirality</subject><subject>Coordination compounds</subject><subject>Enantioselectivity</subject><subject>Exact sciences and technology</subject><subject>Inorganic chemistry and origins of life</subject><subject>Kinetics and mechanisms</subject><subject>Organic chemistry</subject><subject>Preparations and properties</subject><subject>Racemi­zation</subject><subject>Reactivity and mechanisms</subject><issn>1434-193X</issn><issn>1099-0690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOIzEQRVsjkIbXdtbesKNDOe5HegmthIfCIE2DyM6qdtsTg3Ej2wH6s_gRvglHGUXsZlVV0j23qm6S_KIwogDjU_nYi9EYYg8ZhR_JHoWqSqGoYCf2GctSWrHFz2Tf-8eoqYqC7iWvU4s26N5LI0XQr5I0gw1L6bU_IXVvlf67chgFFg1pArba6DCcELQd-SNxjcSZ9IrMdVjq1TP5_EiDdCE9X4XB-JVRvR0MqdG1aKMNadAEf5jsKjReHv2rB8n9bHpXX6bz24ur-myeCpaXkGYSC5pDVaqsBCVaBl0uJjKjDOP9WSEr2QmIP9MyPo0tw4lqCzrpWMdkC8AOktHGV7jeeycVf3H6Gd3AKfB1anydGt-mFoHjDfCCXqBRDq3QfkuNWVxV5DTqqo3uTRs5_MeVT69v6-870g2rfZDvWxbdEy9KVub84fcFh-umGc8WN_ycfQEtCJBL</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Scholz, Roland</creator><creator>Hellmann, Gunther</creator><creator>Rohs, Susanne</creator><creator>Özdemir, Diana</creator><creator>Raabe, Gerhard</creator><creator>Vermeeren, Cornelia</creator><creator>Gais, Hans-Joachim</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201008</creationdate><title>Enantioselective Synthesis, Configurational Stability, and Reactivity of Lithium α-tert-Butylsulfonyl Carbanion Salts</title><author>Scholz, Roland ; Hellmann, Gunther ; Rohs, Susanne ; Özdemir, Diana ; Raabe, Gerhard ; Vermeeren, Cornelia ; Gais, Hans-Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3570-4ea615097f470fcb30d5c8e413a09646e9edc020117004ab3a8fb618d3d3eb003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alkylation</topic><topic>Carbanions</topic><topic>Chemical reactivity</topic><topic>Chemistry</topic><topic>Chirality</topic><topic>Coordination compounds</topic><topic>Enantioselectivity</topic><topic>Exact sciences and technology</topic><topic>Inorganic chemistry and origins of life</topic><topic>Kinetics and mechanisms</topic><topic>Organic chemistry</topic><topic>Preparations and properties</topic><topic>Racemi­zation</topic><topic>Reactivity and mechanisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scholz, Roland</creatorcontrib><creatorcontrib>Hellmann, Gunther</creatorcontrib><creatorcontrib>Rohs, Susanne</creatorcontrib><creatorcontrib>Özdemir, Diana</creatorcontrib><creatorcontrib>Raabe, Gerhard</creatorcontrib><creatorcontrib>Vermeeren, Cornelia</creatorcontrib><creatorcontrib>Gais, Hans-Joachim</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>European Journal of Organic Chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scholz, Roland</au><au>Hellmann, Gunther</au><au>Rohs, Susanne</au><au>Özdemir, Diana</au><au>Raabe, Gerhard</au><au>Vermeeren, Cornelia</au><au>Gais, Hans-Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enantioselective Synthesis, Configurational Stability, and Reactivity of Lithium α-tert-Butylsulfonyl Carbanion Salts</atitle><jtitle>European Journal of Organic Chemistry</jtitle><addtitle>Eur. J. Org. Chem</addtitle><date>2010-08</date><risdate>2010</risdate><volume>2010</volume><issue>24</issue><spage>4588</spage><epage>4616</epage><pages>4588-4616</pages><issn>1434-193X</issn><eissn>1099-0690</eissn><abstract>The reactions of enantiopure S‐tert‐butyl sulfones of the type R1CH(R2)SO2tBu (≥99 % ee) with lithiumorganyl compounds gave the corresponding chiral α‐sulfonyl carbanion salts [R1C(R2)SO2tBu]Li with ≥94 % ee. The enantioselectivity of the deprotonation of the phenyl‐ but not dialkyl‐substituted sulfones is strongly dependent on the nature of the lithiumorganyl. Because of this observation and the strong decrease in enantioselectivity in the presence of TMEDA and HMPA, we propose an intramolecular proton transfer following complexation of the sulfone by RLi. Racemization of [R1C(R2)SO2tBu]Li follows first‐order kinetics and seems to be mainly an enthalpic process with a small negative activation entropy, as revealed by polarimetric measurements at low temperatures. This is in accordance with Cα–S bond rotation as the rate‐determining step. The salts [R1C(R2)SO2tBu]Li have half‐lives of racemization in the order of several hours at –105 °C. The deuteriation of the salts at –105 °C with CF3CO2D proceeded with enantioselectivities of ≥94 % ee, the magnitude of which was not significantly affected by the presence of TMEDA and HMPA. The salts also reacted with carbon‐based electrophiles at low temperatures with high enantioselectivity. The conversion of R1CH(R2)SO2tBu via [R1C(R2)SO2tBu]Li to R1C(R2,E)SO2tBu, which involves the loss of stereogenicity at the α‐stereogenic center and its re‐establishment upon reaction of the chiral carbanion with electrophiles, occurred with high overall enantioselectivity. Electrophiles attack the anionic C atom of [R1C(R2)SO2tBu]Li with high selectivity on the side syn to the O atoms and anti to the tert‐butyl group. The reactivity of the dialkyl‐substituted salts [R1C(R2)SO2tBu]Li (R1, R2 = alkyl) is significantly higher than that of the benzylic salts [RC(Ph)SO2tBu]Li (R = alkyl) and the HMPA‐coordinated SIPs of [MeC(Ph)SO2tBu]Li are significantly more reactive towards EtI than the corresponding O–Li contact ion pairs. Deprotonation of chiral S‐tert‐butyl sulfones with tBuLi gives enantiomerically highly enriched lithium α‐tert‐butylsulfonyl carbanion salts that are configurationally stable at –105 °C in the timescale of their synthesis and reactions with electrophiles. They react at low temperatures with electrophiles with high enantioselectivity.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/ejoc.201000410</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1434-193X
ispartof European Journal of Organic Chemistry, 2010-08, Vol.2010 (24), p.4588-4616
issn 1434-193X
1099-0690
language eng
recordid cdi_crossref_primary_10_1002_ejoc_201000410
source Wiley Online Library Journals Frontfile Complete
subjects Alkylation
Carbanions
Chemical reactivity
Chemistry
Chirality
Coordination compounds
Enantioselectivity
Exact sciences and technology
Inorganic chemistry and origins of life
Kinetics and mechanisms
Organic chemistry
Preparations and properties
Racemi­zation
Reactivity and mechanisms
title Enantioselective Synthesis, Configurational Stability, and Reactivity of Lithium α-tert-Butylsulfonyl Carbanion Salts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A39%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enantioselective%20Synthesis,%20Configurational%20Stability,%20and%20Reactivity%20of%20Lithium%20%CE%B1-tert-Butylsulfonyl%20Carbanion%20Salts&rft.jtitle=European%20Journal%20of%20Organic%20Chemistry&rft.au=Scholz,%20Roland&rft.date=2010-08&rft.volume=2010&rft.issue=24&rft.spage=4588&rft.epage=4616&rft.pages=4588-4616&rft.issn=1434-193X&rft.eissn=1099-0690&rft_id=info:doi/10.1002/ejoc.201000410&rft_dat=%3Cistex_cross%3Eark_67375_WNG_0JSS2FXM_B%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true