Bis- and Tris-DNA Intercalating Porphyrins Designed to Target the Major Groove: Synthesis of Acridylbis-arginyl-porphyrins, Molecular Modelling of Their DNA Complexes, and Experimental Tests

In order to increase the DNA binding affinity of a bis‐arginyl‐porphyrin which has been previously shown to bind preferentially in the major groove of the d(GGCGCC)2 sequence (Mohammadi et al., Biochemistry 1998, 37, 9165), we have synthesized bis‐ and tris‐intercalating derivatives in which one or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of organic chemistry 2004-04, Vol.2004 (8), p.1781-1797
Hauptverfasser: Far, Samia, Kossanyi, Alain, Verchère-Béaur, Catherine, Gresh, Nohad, Taillandier, Eliane, Perrée-Fauvet, Martine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1797
container_issue 8
container_start_page 1781
container_title European journal of organic chemistry
container_volume 2004
creator Far, Samia
Kossanyi, Alain
Verchère-Béaur, Catherine
Gresh, Nohad
Taillandier, Eliane
Perrée-Fauvet, Martine
description In order to increase the DNA binding affinity of a bis‐arginyl‐porphyrin which has been previously shown to bind preferentially in the major groove of the d(GGCGCC)2 sequence (Mohammadi et al., Biochemistry 1998, 37, 9165), we have synthesized bis‐ and tris‐intercalating derivatives in which one or both arginyl arms are connected through a flexible chain to an acridine ring. We report here the synthesis of these two molecules along with the molecular modelling of their complexes with a GC‐rich oligonucleotide encompassing the central d(GGCGCC)2 hexamer. The modelling computations showed that when the porphyrin was intercalated into the central d(CpG)2 site with both arginyl side‐chains bonded to the guanines flanking the intercalation site, the acridine ring(s) could intercalate immediately upstream from the central hexamer, but at the cost of substantial DNA conformational energy. A significant preference for major‐groove binding over minor‐groove binding was found. The results of circular dichroism studies and topoisomerase I‐unwinding experiments supported the bis‐ and tris‐intercalation of these derivatives. The bis‐acridyl derivative provided, as expected, greater stabilization against thermal denaturation than the mono‐acridyl and the parent bis‐arginyl‐porphyrin compounds. Based on the modelling results, the structures of derivatives can be tailored to facilitate tris‐intercalation in rigid GC‐rich sequences, and thereby enhance the selective targeting of GC base pairs by the arginyl side‐chains, by lengthening the porphyrin‐acridine connectors. (© Wiley‐VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004)
doi_str_mv 10.1002/ejoc.200300311
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_ejoc_200300311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_B8FMFLMQ_T</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3251-a00149f6e9b06da6e931516541c1a402bb2c264514d5ab8724af9922adf0e5e73</originalsourceid><addsrcrecordid>eNqFkMtu2zAQRYWiAeom2WbND6jcIfVw2J3fSWDngapIdwQljWy6tCiQamv9XL4tFBwY2QUgMBfEPXcuJgiuKAwpAPuOO1MMGUDkH6WfggEFzkNIOXz2Oo7ikPLo95fgq3M7AOBpSgfBy0S5kMi6JJn1anY_Jrd1i7aQWraq3pBHY5ttZ1XtyAyd2tRYktaQTNoNtqTdIlnLnbFkaY35hz_Iz672n045YioyLqwqO537ZO9XdafD5pT3jayNxuKvltarErXu93kq26KypK8yNftG4wG9t684PzRo1R7rVmqSoWvdRXBWSe3w8m2eB78W82x6E64elrfT8SosIpbQUALQmFcp8hzSUvoZ0YSmSUwLKmNgec4KlsYJjctE5tcjFsuKc8ZkWQEmOIrOg-Ext7DGOYuVaHwRaTtBQfTXF_31xen6HuBH4L_S2H3gFvO7h-l7NjyyyrV4OLHS_hHpKBol4vl-KSbXi_VitX4SWfQKHqebbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bis- and Tris-DNA Intercalating Porphyrins Designed to Target the Major Groove: Synthesis of Acridylbis-arginyl-porphyrins, Molecular Modelling of Their DNA Complexes, and Experimental Tests</title><source>Wiley Online Library</source><creator>Far, Samia ; Kossanyi, Alain ; Verchère-Béaur, Catherine ; Gresh, Nohad ; Taillandier, Eliane ; Perrée-Fauvet, Martine</creator><creatorcontrib>Far, Samia ; Kossanyi, Alain ; Verchère-Béaur, Catherine ; Gresh, Nohad ; Taillandier, Eliane ; Perrée-Fauvet, Martine</creatorcontrib><description>In order to increase the DNA binding affinity of a bis‐arginyl‐porphyrin which has been previously shown to bind preferentially in the major groove of the d(GGCGCC)2 sequence (Mohammadi et al., Biochemistry 1998, 37, 9165), we have synthesized bis‐ and tris‐intercalating derivatives in which one or both arginyl arms are connected through a flexible chain to an acridine ring. We report here the synthesis of these two molecules along with the molecular modelling of their complexes with a GC‐rich oligonucleotide encompassing the central d(GGCGCC)2 hexamer. The modelling computations showed that when the porphyrin was intercalated into the central d(CpG)2 site with both arginyl side‐chains bonded to the guanines flanking the intercalation site, the acridine ring(s) could intercalate immediately upstream from the central hexamer, but at the cost of substantial DNA conformational energy. A significant preference for major‐groove binding over minor‐groove binding was found. The results of circular dichroism studies and topoisomerase I‐unwinding experiments supported the bis‐ and tris‐intercalation of these derivatives. The bis‐acridyl derivative provided, as expected, greater stabilization against thermal denaturation than the mono‐acridyl and the parent bis‐arginyl‐porphyrin compounds. Based on the modelling results, the structures of derivatives can be tailored to facilitate tris‐intercalation in rigid GC‐rich sequences, and thereby enhance the selective targeting of GC base pairs by the arginyl side‐chains, by lengthening the porphyrin‐acridine connectors. (© Wiley‐VCH Verlag GmbH &amp; Co. KGaA, 69451 Weinheim, Germany, 2004)</description><identifier>ISSN: 1434-193X</identifier><identifier>EISSN: 1099-0690</identifier><identifier>DOI: 10.1002/ejoc.200300311</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Cationic porphyrins ; DNA intercalation ; DNA recognition ; Molecular modelling ; Topoisomerase I</subject><ispartof>European journal of organic chemistry, 2004-04, Vol.2004 (8), p.1781-1797</ispartof><rights>Copyright © 2004 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3251-a00149f6e9b06da6e931516541c1a402bb2c264514d5ab8724af9922adf0e5e73</citedby><cites>FETCH-LOGICAL-c3251-a00149f6e9b06da6e931516541c1a402bb2c264514d5ab8724af9922adf0e5e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fejoc.200300311$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45580</link.rule.ids></links><search><creatorcontrib>Far, Samia</creatorcontrib><creatorcontrib>Kossanyi, Alain</creatorcontrib><creatorcontrib>Verchère-Béaur, Catherine</creatorcontrib><creatorcontrib>Gresh, Nohad</creatorcontrib><creatorcontrib>Taillandier, Eliane</creatorcontrib><creatorcontrib>Perrée-Fauvet, Martine</creatorcontrib><title>Bis- and Tris-DNA Intercalating Porphyrins Designed to Target the Major Groove: Synthesis of Acridylbis-arginyl-porphyrins, Molecular Modelling of Their DNA Complexes, and Experimental Tests</title><title>European journal of organic chemistry</title><addtitle>Eur. J. Org. Chem</addtitle><description>In order to increase the DNA binding affinity of a bis‐arginyl‐porphyrin which has been previously shown to bind preferentially in the major groove of the d(GGCGCC)2 sequence (Mohammadi et al., Biochemistry 1998, 37, 9165), we have synthesized bis‐ and tris‐intercalating derivatives in which one or both arginyl arms are connected through a flexible chain to an acridine ring. We report here the synthesis of these two molecules along with the molecular modelling of their complexes with a GC‐rich oligonucleotide encompassing the central d(GGCGCC)2 hexamer. The modelling computations showed that when the porphyrin was intercalated into the central d(CpG)2 site with both arginyl side‐chains bonded to the guanines flanking the intercalation site, the acridine ring(s) could intercalate immediately upstream from the central hexamer, but at the cost of substantial DNA conformational energy. A significant preference for major‐groove binding over minor‐groove binding was found. The results of circular dichroism studies and topoisomerase I‐unwinding experiments supported the bis‐ and tris‐intercalation of these derivatives. The bis‐acridyl derivative provided, as expected, greater stabilization against thermal denaturation than the mono‐acridyl and the parent bis‐arginyl‐porphyrin compounds. Based on the modelling results, the structures of derivatives can be tailored to facilitate tris‐intercalation in rigid GC‐rich sequences, and thereby enhance the selective targeting of GC base pairs by the arginyl side‐chains, by lengthening the porphyrin‐acridine connectors. (© Wiley‐VCH Verlag GmbH &amp; Co. KGaA, 69451 Weinheim, Germany, 2004)</description><subject>Cationic porphyrins</subject><subject>DNA intercalation</subject><subject>DNA recognition</subject><subject>Molecular modelling</subject><subject>Topoisomerase I</subject><issn>1434-193X</issn><issn>1099-0690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkMtu2zAQRYWiAeom2WbND6jcIfVw2J3fSWDngapIdwQljWy6tCiQamv9XL4tFBwY2QUgMBfEPXcuJgiuKAwpAPuOO1MMGUDkH6WfggEFzkNIOXz2Oo7ikPLo95fgq3M7AOBpSgfBy0S5kMi6JJn1anY_Jrd1i7aQWraq3pBHY5ttZ1XtyAyd2tRYktaQTNoNtqTdIlnLnbFkaY35hz_Iz672n045YioyLqwqO537ZO9XdafD5pT3jayNxuKvltarErXu93kq26KypK8yNftG4wG9t684PzRo1R7rVmqSoWvdRXBWSe3w8m2eB78W82x6E64elrfT8SosIpbQUALQmFcp8hzSUvoZ0YSmSUwLKmNgec4KlsYJjctE5tcjFsuKc8ZkWQEmOIrOg-Ext7DGOYuVaHwRaTtBQfTXF_31xen6HuBH4L_S2H3gFvO7h-l7NjyyyrV4OLHS_hHpKBol4vl-KSbXi_VitX4SWfQKHqebbA</recordid><startdate>200404</startdate><enddate>200404</enddate><creator>Far, Samia</creator><creator>Kossanyi, Alain</creator><creator>Verchère-Béaur, Catherine</creator><creator>Gresh, Nohad</creator><creator>Taillandier, Eliane</creator><creator>Perrée-Fauvet, Martine</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200404</creationdate><title>Bis- and Tris-DNA Intercalating Porphyrins Designed to Target the Major Groove: Synthesis of Acridylbis-arginyl-porphyrins, Molecular Modelling of Their DNA Complexes, and Experimental Tests</title><author>Far, Samia ; Kossanyi, Alain ; Verchère-Béaur, Catherine ; Gresh, Nohad ; Taillandier, Eliane ; Perrée-Fauvet, Martine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3251-a00149f6e9b06da6e931516541c1a402bb2c264514d5ab8724af9922adf0e5e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Cationic porphyrins</topic><topic>DNA intercalation</topic><topic>DNA recognition</topic><topic>Molecular modelling</topic><topic>Topoisomerase I</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Far, Samia</creatorcontrib><creatorcontrib>Kossanyi, Alain</creatorcontrib><creatorcontrib>Verchère-Béaur, Catherine</creatorcontrib><creatorcontrib>Gresh, Nohad</creatorcontrib><creatorcontrib>Taillandier, Eliane</creatorcontrib><creatorcontrib>Perrée-Fauvet, Martine</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>European journal of organic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Far, Samia</au><au>Kossanyi, Alain</au><au>Verchère-Béaur, Catherine</au><au>Gresh, Nohad</au><au>Taillandier, Eliane</au><au>Perrée-Fauvet, Martine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bis- and Tris-DNA Intercalating Porphyrins Designed to Target the Major Groove: Synthesis of Acridylbis-arginyl-porphyrins, Molecular Modelling of Their DNA Complexes, and Experimental Tests</atitle><jtitle>European journal of organic chemistry</jtitle><addtitle>Eur. J. Org. Chem</addtitle><date>2004-04</date><risdate>2004</risdate><volume>2004</volume><issue>8</issue><spage>1781</spage><epage>1797</epage><pages>1781-1797</pages><issn>1434-193X</issn><eissn>1099-0690</eissn><abstract>In order to increase the DNA binding affinity of a bis‐arginyl‐porphyrin which has been previously shown to bind preferentially in the major groove of the d(GGCGCC)2 sequence (Mohammadi et al., Biochemistry 1998, 37, 9165), we have synthesized bis‐ and tris‐intercalating derivatives in which one or both arginyl arms are connected through a flexible chain to an acridine ring. We report here the synthesis of these two molecules along with the molecular modelling of their complexes with a GC‐rich oligonucleotide encompassing the central d(GGCGCC)2 hexamer. The modelling computations showed that when the porphyrin was intercalated into the central d(CpG)2 site with both arginyl side‐chains bonded to the guanines flanking the intercalation site, the acridine ring(s) could intercalate immediately upstream from the central hexamer, but at the cost of substantial DNA conformational energy. A significant preference for major‐groove binding over minor‐groove binding was found. The results of circular dichroism studies and topoisomerase I‐unwinding experiments supported the bis‐ and tris‐intercalation of these derivatives. The bis‐acridyl derivative provided, as expected, greater stabilization against thermal denaturation than the mono‐acridyl and the parent bis‐arginyl‐porphyrin compounds. Based on the modelling results, the structures of derivatives can be tailored to facilitate tris‐intercalation in rigid GC‐rich sequences, and thereby enhance the selective targeting of GC base pairs by the arginyl side‐chains, by lengthening the porphyrin‐acridine connectors. (© Wiley‐VCH Verlag GmbH &amp; Co. KGaA, 69451 Weinheim, Germany, 2004)</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/ejoc.200300311</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1434-193X
ispartof European journal of organic chemistry, 2004-04, Vol.2004 (8), p.1781-1797
issn 1434-193X
1099-0690
language eng
recordid cdi_crossref_primary_10_1002_ejoc_200300311
source Wiley Online Library
subjects Cationic porphyrins
DNA intercalation
DNA recognition
Molecular modelling
Topoisomerase I
title Bis- and Tris-DNA Intercalating Porphyrins Designed to Target the Major Groove: Synthesis of Acridylbis-arginyl-porphyrins, Molecular Modelling of Their DNA Complexes, and Experimental Tests
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T21%3A46%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bis-%20and%20Tris-DNA%20Intercalating%20Porphyrins%20Designed%20to%20Target%20the%20Major%20Groove:%20Synthesis%20of%20Acridylbis-arginyl-porphyrins,%20Molecular%20Modelling%20of%20Their%20DNA%20Complexes,%20and%20Experimental%20Tests&rft.jtitle=European%20journal%20of%20organic%20chemistry&rft.au=Far,%20Samia&rft.date=2004-04&rft.volume=2004&rft.issue=8&rft.spage=1781&rft.epage=1797&rft.pages=1781-1797&rft.issn=1434-193X&rft.eissn=1099-0690&rft_id=info:doi/10.1002/ejoc.200300311&rft_dat=%3Cistex_cross%3Eark_67375_WNG_B8FMFLMQ_T%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true