Incorporating Line Radiation Effects into Edge Plasma Codes
Strong hydrogen line radiation can significantly affect the ionization and energy balance in high‐density, lowtemperature edge plasmas. A fully self‐consistent one‐dimensional simulation code integrating line radiation with edge plasma transport has recently been demonstrated. This code allows us to...
Gespeichert in:
Veröffentlicht in: | Contributions to plasma physics (1985) 2004-04, Vol.44 (1-3), p.51-56 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56 |
---|---|
container_issue | 1-3 |
container_start_page | 51 |
container_title | Contributions to plasma physics (1985) |
container_volume | 44 |
creator | Scott, Howard A. Adams, Mark L. |
description | Strong hydrogen line radiation can significantly affect the ionization and energy balance in high‐density, lowtemperature edge plasmas. A fully self‐consistent one‐dimensional simulation code integrating line radiation with edge plasma transport has recently been demonstrated. This code allows us to evaluate the use of approximate treatments of radiation effects that could potentially be incorporated into existing two‐dimensional edge plasma codes. For a given approximation, we tabulate effective ionization, recombination and energy loss rates for hydrogen plasmas in a one‐dimensional geometry as a function of electron density, temperature and position. The position is a simple parameterization corresponding to optical depth, with the correspondence dependent on plasma properties, including magnetic field. The parameterized values can differ by more than an order of magnitude from the optically thin values.
We present one‐dimensional edge plasma simulations using the parameterized tables and compare them to self‐consistent simulations to investigate the validity of this approach, the effectiveness of the parameterization and the accuracy of the approximations used. We also present results using parameterized tables in a twodimensional code and discuss the validity of applying them in this manner. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
doi_str_mv | 10.1002/ctpp.200410008 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_ctpp_200410008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_KG2HKMK9_K</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2878-bf800fb51ebb20aa75539e09f83d17b3a550f661694e194aa8f15f723f61d2ec3</originalsourceid><addsrcrecordid>eNqFj89LwzAYhoMoOKdXz7147MyPJk3wJGV2o1OHTDyGNE1GtGtLUtD993ZUpjdPHy88z_vxAnCN4AxBiG9133UzDGEyJMhPwARRjGIiODsFE8gZiRFM8Dm4COF9IARL0ATcLRvd-q71qnfNNlq5xkQvqnJDbJtobq3RfYhc07fRvNqaaF2rsFNR1lYmXIIzq-pgrn7uFLw-zDfZIl4958vsfhVrzFMel5ZDaEuKTFliqFRKKREGCstJhdKSKEqhZQwxkRgkEqW4RdSmmFiGKmw0mYLZ2Kt9G4I3Vnbe7ZTfSwTlYbo8TJfH6YNwMwqdClrV1qtGu_Br0RQJQcXAiZH7dLXZ_9Mqs816_fdHPLou9Obr6Cr_IVlKUirfnnJZ5HhRPBZCFuQbUep4xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Incorporating Line Radiation Effects into Edge Plasma Codes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Scott, Howard A. ; Adams, Mark L.</creator><creatorcontrib>Scott, Howard A. ; Adams, Mark L.</creatorcontrib><description>Strong hydrogen line radiation can significantly affect the ionization and energy balance in high‐density, lowtemperature edge plasmas. A fully self‐consistent one‐dimensional simulation code integrating line radiation with edge plasma transport has recently been demonstrated. This code allows us to evaluate the use of approximate treatments of radiation effects that could potentially be incorporated into existing two‐dimensional edge plasma codes. For a given approximation, we tabulate effective ionization, recombination and energy loss rates for hydrogen plasmas in a one‐dimensional geometry as a function of electron density, temperature and position. The position is a simple parameterization corresponding to optical depth, with the correspondence dependent on plasma properties, including magnetic field. The parameterized values can differ by more than an order of magnitude from the optically thin values.
We present one‐dimensional edge plasma simulations using the parameterized tables and compare them to self‐consistent simulations to investigate the validity of this approach, the effectiveness of the parameterization and the accuracy of the approximations used. We also present results using parameterized tables in a twodimensional code and discuss the validity of applying them in this manner. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><identifier>ISSN: 0863-1042</identifier><identifier>EISSN: 1521-3986</identifier><identifier>DOI: 10.1002/ctpp.200410008</identifier><identifier>CODEN: BPPHAA</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>divertor ; Exact sciences and technology ; ITER ; line radiation ; Magnetic confinement and equilibrium ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma simulation ; plasma transport ; tokamak ; Tokamaks</subject><ispartof>Contributions to plasma physics (1985), 2004-04, Vol.44 (1-3), p.51-56</ispartof><rights>Copyright © 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2878-bf800fb51ebb20aa75539e09f83d17b3a550f661694e194aa8f15f723f61d2ec3</citedby><cites>FETCH-LOGICAL-c2878-bf800fb51ebb20aa75539e09f83d17b3a550f661694e194aa8f15f723f61d2ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fctpp.200410008$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,1411,23909,23910,25118,27901,27902,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15719959$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Scott, Howard A.</creatorcontrib><creatorcontrib>Adams, Mark L.</creatorcontrib><title>Incorporating Line Radiation Effects into Edge Plasma Codes</title><title>Contributions to plasma physics (1985)</title><addtitle>Contrib. Plasma Phys</addtitle><description>Strong hydrogen line radiation can significantly affect the ionization and energy balance in high‐density, lowtemperature edge plasmas. A fully self‐consistent one‐dimensional simulation code integrating line radiation with edge plasma transport has recently been demonstrated. This code allows us to evaluate the use of approximate treatments of radiation effects that could potentially be incorporated into existing two‐dimensional edge plasma codes. For a given approximation, we tabulate effective ionization, recombination and energy loss rates for hydrogen plasmas in a one‐dimensional geometry as a function of electron density, temperature and position. The position is a simple parameterization corresponding to optical depth, with the correspondence dependent on plasma properties, including magnetic field. The parameterized values can differ by more than an order of magnitude from the optically thin values.
We present one‐dimensional edge plasma simulations using the parameterized tables and compare them to self‐consistent simulations to investigate the validity of this approach, the effectiveness of the parameterization and the accuracy of the approximations used. We also present results using parameterized tables in a twodimensional code and discuss the validity of applying them in this manner. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</description><subject>divertor</subject><subject>Exact sciences and technology</subject><subject>ITER</subject><subject>line radiation</subject><subject>Magnetic confinement and equilibrium</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma simulation</subject><subject>plasma transport</subject><subject>tokamak</subject><subject>Tokamaks</subject><issn>0863-1042</issn><issn>1521-3986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFj89LwzAYhoMoOKdXz7147MyPJk3wJGV2o1OHTDyGNE1GtGtLUtD993ZUpjdPHy88z_vxAnCN4AxBiG9133UzDGEyJMhPwARRjGIiODsFE8gZiRFM8Dm4COF9IARL0ATcLRvd-q71qnfNNlq5xkQvqnJDbJtobq3RfYhc07fRvNqaaF2rsFNR1lYmXIIzq-pgrn7uFLw-zDfZIl4958vsfhVrzFMel5ZDaEuKTFliqFRKKREGCstJhdKSKEqhZQwxkRgkEqW4RdSmmFiGKmw0mYLZ2Kt9G4I3Vnbe7ZTfSwTlYbo8TJfH6YNwMwqdClrV1qtGu_Br0RQJQcXAiZH7dLXZ_9Mqs816_fdHPLou9Obr6Cr_IVlKUirfnnJZ5HhRPBZCFuQbUep4xg</recordid><startdate>200404</startdate><enddate>200404</enddate><creator>Scott, Howard A.</creator><creator>Adams, Mark L.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200404</creationdate><title>Incorporating Line Radiation Effects into Edge Plasma Codes</title><author>Scott, Howard A. ; Adams, Mark L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2878-bf800fb51ebb20aa75539e09f83d17b3a550f661694e194aa8f15f723f61d2ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>divertor</topic><topic>Exact sciences and technology</topic><topic>ITER</topic><topic>line radiation</topic><topic>Magnetic confinement and equilibrium</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma simulation</topic><topic>plasma transport</topic><topic>tokamak</topic><topic>Tokamaks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scott, Howard A.</creatorcontrib><creatorcontrib>Adams, Mark L.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Contributions to plasma physics (1985)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scott, Howard A.</au><au>Adams, Mark L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporating Line Radiation Effects into Edge Plasma Codes</atitle><jtitle>Contributions to plasma physics (1985)</jtitle><addtitle>Contrib. Plasma Phys</addtitle><date>2004-04</date><risdate>2004</risdate><volume>44</volume><issue>1-3</issue><spage>51</spage><epage>56</epage><pages>51-56</pages><issn>0863-1042</issn><eissn>1521-3986</eissn><coden>BPPHAA</coden><abstract>Strong hydrogen line radiation can significantly affect the ionization and energy balance in high‐density, lowtemperature edge plasmas. A fully self‐consistent one‐dimensional simulation code integrating line radiation with edge plasma transport has recently been demonstrated. This code allows us to evaluate the use of approximate treatments of radiation effects that could potentially be incorporated into existing two‐dimensional edge plasma codes. For a given approximation, we tabulate effective ionization, recombination and energy loss rates for hydrogen plasmas in a one‐dimensional geometry as a function of electron density, temperature and position. The position is a simple parameterization corresponding to optical depth, with the correspondence dependent on plasma properties, including magnetic field. The parameterized values can differ by more than an order of magnitude from the optically thin values.
We present one‐dimensional edge plasma simulations using the parameterized tables and compare them to self‐consistent simulations to investigate the validity of this approach, the effectiveness of the parameterization and the accuracy of the approximations used. We also present results using parameterized tables in a twodimensional code and discuss the validity of applying them in this manner. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/ctpp.200410008</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0863-1042 |
ispartof | Contributions to plasma physics (1985), 2004-04, Vol.44 (1-3), p.51-56 |
issn | 0863-1042 1521-3986 |
language | eng |
recordid | cdi_crossref_primary_10_1002_ctpp_200410008 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | divertor Exact sciences and technology ITER line radiation Magnetic confinement and equilibrium Physics Physics of gases, plasmas and electric discharges Physics of plasmas and electric discharges Plasma simulation plasma transport tokamak Tokamaks |
title | Incorporating Line Radiation Effects into Edge Plasma Codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporating%20Line%20Radiation%20Effects%20into%20Edge%20Plasma%20Codes&rft.jtitle=Contributions%20to%20plasma%20physics%20(1985)&rft.au=Scott,%20Howard%20A.&rft.date=2004-04&rft.volume=44&rft.issue=1-3&rft.spage=51&rft.epage=56&rft.pages=51-56&rft.issn=0863-1042&rft.eissn=1521-3986&rft.coden=BPPHAA&rft_id=info:doi/10.1002/ctpp.200410008&rft_dat=%3Cistex_cross%3Eark_67375_WNG_KG2HKMK9_K%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |