Incorporating Line Radiation Effects into Edge Plasma Codes

Strong hydrogen line radiation can significantly affect the ionization and energy balance in high‐density, lowtemperature edge plasmas. A fully self‐consistent one‐dimensional simulation code integrating line radiation with edge plasma transport has recently been demonstrated. This code allows us to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contributions to plasma physics (1985) 2004-04, Vol.44 (1-3), p.51-56
Hauptverfasser: Scott, Howard A., Adams, Mark L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 1-3
container_start_page 51
container_title Contributions to plasma physics (1985)
container_volume 44
creator Scott, Howard A.
Adams, Mark L.
description Strong hydrogen line radiation can significantly affect the ionization and energy balance in high‐density, lowtemperature edge plasmas. A fully self‐consistent one‐dimensional simulation code integrating line radiation with edge plasma transport has recently been demonstrated. This code allows us to evaluate the use of approximate treatments of radiation effects that could potentially be incorporated into existing two‐dimensional edge plasma codes. For a given approximation, we tabulate effective ionization, recombination and energy loss rates for hydrogen plasmas in a one‐dimensional geometry as a function of electron density, temperature and position. The position is a simple parameterization corresponding to optical depth, with the correspondence dependent on plasma properties, including magnetic field. The parameterized values can differ by more than an order of magnitude from the optically thin values. We present one‐dimensional edge plasma simulations using the parameterized tables and compare them to self‐consistent simulations to investigate the validity of this approach, the effectiveness of the parameterization and the accuracy of the approximations used. We also present results using parameterized tables in a twodimensional code and discuss the validity of applying them in this manner. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
doi_str_mv 10.1002/ctpp.200410008
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_ctpp_200410008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_KG2HKMK9_K</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2878-bf800fb51ebb20aa75539e09f83d17b3a550f661694e194aa8f15f723f61d2ec3</originalsourceid><addsrcrecordid>eNqFj89LwzAYhoMoOKdXz7147MyPJk3wJGV2o1OHTDyGNE1GtGtLUtD993ZUpjdPHy88z_vxAnCN4AxBiG9133UzDGEyJMhPwARRjGIiODsFE8gZiRFM8Dm4COF9IARL0ATcLRvd-q71qnfNNlq5xkQvqnJDbJtobq3RfYhc07fRvNqaaF2rsFNR1lYmXIIzq-pgrn7uFLw-zDfZIl4958vsfhVrzFMel5ZDaEuKTFliqFRKKREGCstJhdKSKEqhZQwxkRgkEqW4RdSmmFiGKmw0mYLZ2Kt9G4I3Vnbe7ZTfSwTlYbo8TJfH6YNwMwqdClrV1qtGu_Br0RQJQcXAiZH7dLXZ_9Mqs816_fdHPLou9Obr6Cr_IVlKUirfnnJZ5HhRPBZCFuQbUep4xg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Incorporating Line Radiation Effects into Edge Plasma Codes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Scott, Howard A. ; Adams, Mark L.</creator><creatorcontrib>Scott, Howard A. ; Adams, Mark L.</creatorcontrib><description>Strong hydrogen line radiation can significantly affect the ionization and energy balance in high‐density, lowtemperature edge plasmas. A fully self‐consistent one‐dimensional simulation code integrating line radiation with edge plasma transport has recently been demonstrated. This code allows us to evaluate the use of approximate treatments of radiation effects that could potentially be incorporated into existing two‐dimensional edge plasma codes. For a given approximation, we tabulate effective ionization, recombination and energy loss rates for hydrogen plasmas in a one‐dimensional geometry as a function of electron density, temperature and position. The position is a simple parameterization corresponding to optical depth, with the correspondence dependent on plasma properties, including magnetic field. The parameterized values can differ by more than an order of magnitude from the optically thin values. We present one‐dimensional edge plasma simulations using the parameterized tables and compare them to self‐consistent simulations to investigate the validity of this approach, the effectiveness of the parameterization and the accuracy of the approximations used. We also present results using parameterized tables in a twodimensional code and discuss the validity of applying them in this manner. (© 2004 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><identifier>ISSN: 0863-1042</identifier><identifier>EISSN: 1521-3986</identifier><identifier>DOI: 10.1002/ctpp.200410008</identifier><identifier>CODEN: BPPHAA</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>divertor ; Exact sciences and technology ; ITER ; line radiation ; Magnetic confinement and equilibrium ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma simulation ; plasma transport ; tokamak ; Tokamaks</subject><ispartof>Contributions to plasma physics (1985), 2004-04, Vol.44 (1-3), p.51-56</ispartof><rights>Copyright © 2004 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2878-bf800fb51ebb20aa75539e09f83d17b3a550f661694e194aa8f15f723f61d2ec3</citedby><cites>FETCH-LOGICAL-c2878-bf800fb51ebb20aa75539e09f83d17b3a550f661694e194aa8f15f723f61d2ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fctpp.200410008$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,1411,23909,23910,25118,27901,27902,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15719959$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Scott, Howard A.</creatorcontrib><creatorcontrib>Adams, Mark L.</creatorcontrib><title>Incorporating Line Radiation Effects into Edge Plasma Codes</title><title>Contributions to plasma physics (1985)</title><addtitle>Contrib. Plasma Phys</addtitle><description>Strong hydrogen line radiation can significantly affect the ionization and energy balance in high‐density, lowtemperature edge plasmas. A fully self‐consistent one‐dimensional simulation code integrating line radiation with edge plasma transport has recently been demonstrated. This code allows us to evaluate the use of approximate treatments of radiation effects that could potentially be incorporated into existing two‐dimensional edge plasma codes. For a given approximation, we tabulate effective ionization, recombination and energy loss rates for hydrogen plasmas in a one‐dimensional geometry as a function of electron density, temperature and position. The position is a simple parameterization corresponding to optical depth, with the correspondence dependent on plasma properties, including magnetic field. The parameterized values can differ by more than an order of magnitude from the optically thin values. We present one‐dimensional edge plasma simulations using the parameterized tables and compare them to self‐consistent simulations to investigate the validity of this approach, the effectiveness of the parameterization and the accuracy of the approximations used. We also present results using parameterized tables in a twodimensional code and discuss the validity of applying them in this manner. (© 2004 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><subject>divertor</subject><subject>Exact sciences and technology</subject><subject>ITER</subject><subject>line radiation</subject><subject>Magnetic confinement and equilibrium</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma simulation</subject><subject>plasma transport</subject><subject>tokamak</subject><subject>Tokamaks</subject><issn>0863-1042</issn><issn>1521-3986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFj89LwzAYhoMoOKdXz7147MyPJk3wJGV2o1OHTDyGNE1GtGtLUtD993ZUpjdPHy88z_vxAnCN4AxBiG9133UzDGEyJMhPwARRjGIiODsFE8gZiRFM8Dm4COF9IARL0ATcLRvd-q71qnfNNlq5xkQvqnJDbJtobq3RfYhc07fRvNqaaF2rsFNR1lYmXIIzq-pgrn7uFLw-zDfZIl4958vsfhVrzFMel5ZDaEuKTFliqFRKKREGCstJhdKSKEqhZQwxkRgkEqW4RdSmmFiGKmw0mYLZ2Kt9G4I3Vnbe7ZTfSwTlYbo8TJfH6YNwMwqdClrV1qtGu_Br0RQJQcXAiZH7dLXZ_9Mqs816_fdHPLou9Obr6Cr_IVlKUirfnnJZ5HhRPBZCFuQbUep4xg</recordid><startdate>200404</startdate><enddate>200404</enddate><creator>Scott, Howard A.</creator><creator>Adams, Mark L.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200404</creationdate><title>Incorporating Line Radiation Effects into Edge Plasma Codes</title><author>Scott, Howard A. ; Adams, Mark L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2878-bf800fb51ebb20aa75539e09f83d17b3a550f661694e194aa8f15f723f61d2ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>divertor</topic><topic>Exact sciences and technology</topic><topic>ITER</topic><topic>line radiation</topic><topic>Magnetic confinement and equilibrium</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma simulation</topic><topic>plasma transport</topic><topic>tokamak</topic><topic>Tokamaks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scott, Howard A.</creatorcontrib><creatorcontrib>Adams, Mark L.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Contributions to plasma physics (1985)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scott, Howard A.</au><au>Adams, Mark L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporating Line Radiation Effects into Edge Plasma Codes</atitle><jtitle>Contributions to plasma physics (1985)</jtitle><addtitle>Contrib. Plasma Phys</addtitle><date>2004-04</date><risdate>2004</risdate><volume>44</volume><issue>1-3</issue><spage>51</spage><epage>56</epage><pages>51-56</pages><issn>0863-1042</issn><eissn>1521-3986</eissn><coden>BPPHAA</coden><abstract>Strong hydrogen line radiation can significantly affect the ionization and energy balance in high‐density, lowtemperature edge plasmas. A fully self‐consistent one‐dimensional simulation code integrating line radiation with edge plasma transport has recently been demonstrated. This code allows us to evaluate the use of approximate treatments of radiation effects that could potentially be incorporated into existing two‐dimensional edge plasma codes. For a given approximation, we tabulate effective ionization, recombination and energy loss rates for hydrogen plasmas in a one‐dimensional geometry as a function of electron density, temperature and position. The position is a simple parameterization corresponding to optical depth, with the correspondence dependent on plasma properties, including magnetic field. The parameterized values can differ by more than an order of magnitude from the optically thin values. We present one‐dimensional edge plasma simulations using the parameterized tables and compare them to self‐consistent simulations to investigate the validity of this approach, the effectiveness of the parameterization and the accuracy of the approximations used. We also present results using parameterized tables in a twodimensional code and discuss the validity of applying them in this manner. (© 2004 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/ctpp.200410008</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0863-1042
ispartof Contributions to plasma physics (1985), 2004-04, Vol.44 (1-3), p.51-56
issn 0863-1042
1521-3986
language eng
recordid cdi_crossref_primary_10_1002_ctpp_200410008
source Wiley Online Library Journals Frontfile Complete
subjects divertor
Exact sciences and technology
ITER
line radiation
Magnetic confinement and equilibrium
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Plasma simulation
plasma transport
tokamak
Tokamaks
title Incorporating Line Radiation Effects into Edge Plasma Codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporating%20Line%20Radiation%20Effects%20into%20Edge%20Plasma%20Codes&rft.jtitle=Contributions%20to%20plasma%20physics%20(1985)&rft.au=Scott,%20Howard%20A.&rft.date=2004-04&rft.volume=44&rft.issue=1-3&rft.spage=51&rft.epage=56&rft.pages=51-56&rft.issn=0863-1042&rft.eissn=1521-3986&rft.coden=BPPHAA&rft_id=info:doi/10.1002/ctpp.200410008&rft_dat=%3Cistex_cross%3Eark_67375_WNG_KG2HKMK9_K%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true