Modified third‐order sliding mode control with adaptive gains for a multiphase PMSG wind turbine under double‐phase open fault

Wind energy production systems (WEPS) are increasingly vital in the transition to renewable energy sources, with permanent magnetic synchronous generators (PMSG) being widely adopted due to their high efficiency and reliability. Developing robust control methods is essential to ensure that WEPS oper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of circuit theory and applications 2024-08
Hauptverfasser: Bounadja, Elhadj, Belhadj Djilali, Abdelkadir, Yahdou, Adil
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title International journal of circuit theory and applications
container_volume
creator Bounadja, Elhadj
Belhadj Djilali, Abdelkadir
Yahdou, Adil
description Wind energy production systems (WEPS) are increasingly vital in the transition to renewable energy sources, with permanent magnetic synchronous generators (PMSG) being widely adopted due to their high efficiency and reliability. Developing robust control methods is essential to ensure that WEPS operate efficiently even under adverse conditions. This study focuses on optimizing control strategies for WEPS utilizing a 5‐phase PMSG and addresses challenges posed by double‐phase open fault (DPOF) scenarios. Unlike conventional second‐order sliding mode control (SOSMC) based on the super‐twisting algorithm (STA), the proposed method enhances performance by elevating the sliding surface time derivative degree to a third order and modifying the discontinuous term of STA with an arctangent function, promising to reduce chattering effects. Additionally, an adaptation law adjusts the improved STA gains, forming adaptive‐gain third‐order sliding mode control (AG‐TOSMC), which outperforms SOSMC under various disturbances such as wind speed fluctuations, parameter changes, and DPOF scenarios. The AG‐TOSMC enhances the quality of active and reactive power by reducing fluctuation ratios compared with the SOSMC. The efficiency of WEPS increases to 98.5% with AG‐TOSMC, surpassing the 93.5% achieved with SOSMC. Additionally, a DPOF test confirms the aptitude of the 5‐phase PMSG to work under degraded circumstances, supplying appropriate electrical power to the network without significant adverse effects. Numerical simulations validate the efficiency of the suggested WEPS and its control, demonstrating superior performance achieved with AG‐TOSMC.
doi_str_mv 10.1002/cta.4253
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cta_4253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_cta_4253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c152t-67fc63f97213b9f464cda64f42a4ef13fb301d672d6d6f04b8966936b439d5ee3</originalsourceid><addsrcrecordid>eNotkM1KAzEYRYMoWKvgI2TpZuqXn2YmSylaBYuCCu6GzCRpI9NkSDKKO_EJfEafxCl1dTf3ngsHoXMCMwJAL9usZpzO2QGaEJBlAVC-HqIJgKwKWVXiGJ2k9AYAFWVygr5XQTvrjMZ546L-_foJUZuIU-e082u8DdrgNvgcQ4c_XN5gpVWf3bvBa-V8wjZErPB26LLrNyoZ_Lh6Wo5NPxKH2Dhv8OB3RB2GpjPjwb4WeuOxVePuFB1Z1SVz9p9T9HJz_by4Le4flneLq_uiJXOaC1HaVjArS0pYIy0XvNVKcMup4sYSZhsGRIuSaqGFBd5UUgjJRMOZ1HNj2BRd7LltDClFY-s-uq2KnzWBeueuHt3VO3fsDz3DZkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modified third‐order sliding mode control with adaptive gains for a multiphase PMSG wind turbine under double‐phase open fault</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bounadja, Elhadj ; Belhadj Djilali, Abdelkadir ; Yahdou, Adil</creator><creatorcontrib>Bounadja, Elhadj ; Belhadj Djilali, Abdelkadir ; Yahdou, Adil</creatorcontrib><description>Wind energy production systems (WEPS) are increasingly vital in the transition to renewable energy sources, with permanent magnetic synchronous generators (PMSG) being widely adopted due to their high efficiency and reliability. Developing robust control methods is essential to ensure that WEPS operate efficiently even under adverse conditions. This study focuses on optimizing control strategies for WEPS utilizing a 5‐phase PMSG and addresses challenges posed by double‐phase open fault (DPOF) scenarios. Unlike conventional second‐order sliding mode control (SOSMC) based on the super‐twisting algorithm (STA), the proposed method enhances performance by elevating the sliding surface time derivative degree to a third order and modifying the discontinuous term of STA with an arctangent function, promising to reduce chattering effects. Additionally, an adaptation law adjusts the improved STA gains, forming adaptive‐gain third‐order sliding mode control (AG‐TOSMC), which outperforms SOSMC under various disturbances such as wind speed fluctuations, parameter changes, and DPOF scenarios. The AG‐TOSMC enhances the quality of active and reactive power by reducing fluctuation ratios compared with the SOSMC. The efficiency of WEPS increases to 98.5% with AG‐TOSMC, surpassing the 93.5% achieved with SOSMC. Additionally, a DPOF test confirms the aptitude of the 5‐phase PMSG to work under degraded circumstances, supplying appropriate electrical power to the network without significant adverse effects. Numerical simulations validate the efficiency of the suggested WEPS and its control, demonstrating superior performance achieved with AG‐TOSMC.</description><identifier>ISSN: 0098-9886</identifier><identifier>EISSN: 1097-007X</identifier><identifier>DOI: 10.1002/cta.4253</identifier><language>eng</language><ispartof>International journal of circuit theory and applications, 2024-08</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c152t-67fc63f97213b9f464cda64f42a4ef13fb301d672d6d6f04b8966936b439d5ee3</cites><orcidid>0000-0002-3002-4316 ; 0000-0002-1047-3843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Bounadja, Elhadj</creatorcontrib><creatorcontrib>Belhadj Djilali, Abdelkadir</creatorcontrib><creatorcontrib>Yahdou, Adil</creatorcontrib><title>Modified third‐order sliding mode control with adaptive gains for a multiphase PMSG wind turbine under double‐phase open fault</title><title>International journal of circuit theory and applications</title><description>Wind energy production systems (WEPS) are increasingly vital in the transition to renewable energy sources, with permanent magnetic synchronous generators (PMSG) being widely adopted due to their high efficiency and reliability. Developing robust control methods is essential to ensure that WEPS operate efficiently even under adverse conditions. This study focuses on optimizing control strategies for WEPS utilizing a 5‐phase PMSG and addresses challenges posed by double‐phase open fault (DPOF) scenarios. Unlike conventional second‐order sliding mode control (SOSMC) based on the super‐twisting algorithm (STA), the proposed method enhances performance by elevating the sliding surface time derivative degree to a third order and modifying the discontinuous term of STA with an arctangent function, promising to reduce chattering effects. Additionally, an adaptation law adjusts the improved STA gains, forming adaptive‐gain third‐order sliding mode control (AG‐TOSMC), which outperforms SOSMC under various disturbances such as wind speed fluctuations, parameter changes, and DPOF scenarios. The AG‐TOSMC enhances the quality of active and reactive power by reducing fluctuation ratios compared with the SOSMC. The efficiency of WEPS increases to 98.5% with AG‐TOSMC, surpassing the 93.5% achieved with SOSMC. Additionally, a DPOF test confirms the aptitude of the 5‐phase PMSG to work under degraded circumstances, supplying appropriate electrical power to the network without significant adverse effects. Numerical simulations validate the efficiency of the suggested WEPS and its control, demonstrating superior performance achieved with AG‐TOSMC.</description><issn>0098-9886</issn><issn>1097-007X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEYRYMoWKvgI2TpZuqXn2YmSylaBYuCCu6GzCRpI9NkSDKKO_EJfEafxCl1dTf3ngsHoXMCMwJAL9usZpzO2QGaEJBlAVC-HqIJgKwKWVXiGJ2k9AYAFWVygr5XQTvrjMZ546L-_foJUZuIU-e082u8DdrgNvgcQ4c_XN5gpVWf3bvBa-V8wjZErPB26LLrNyoZ_Lh6Wo5NPxKH2Dhv8OB3RB2GpjPjwb4WeuOxVePuFB1Z1SVz9p9T9HJz_by4Le4flneLq_uiJXOaC1HaVjArS0pYIy0XvNVKcMup4sYSZhsGRIuSaqGFBd5UUgjJRMOZ1HNj2BRd7LltDClFY-s-uq2KnzWBeueuHt3VO3fsDz3DZkQ</recordid><startdate>20240821</startdate><enddate>20240821</enddate><creator>Bounadja, Elhadj</creator><creator>Belhadj Djilali, Abdelkadir</creator><creator>Yahdou, Adil</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3002-4316</orcidid><orcidid>https://orcid.org/0000-0002-1047-3843</orcidid></search><sort><creationdate>20240821</creationdate><title>Modified third‐order sliding mode control with adaptive gains for a multiphase PMSG wind turbine under double‐phase open fault</title><author>Bounadja, Elhadj ; Belhadj Djilali, Abdelkadir ; Yahdou, Adil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c152t-67fc63f97213b9f464cda64f42a4ef13fb301d672d6d6f04b8966936b439d5ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bounadja, Elhadj</creatorcontrib><creatorcontrib>Belhadj Djilali, Abdelkadir</creatorcontrib><creatorcontrib>Yahdou, Adil</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of circuit theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bounadja, Elhadj</au><au>Belhadj Djilali, Abdelkadir</au><au>Yahdou, Adil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified third‐order sliding mode control with adaptive gains for a multiphase PMSG wind turbine under double‐phase open fault</atitle><jtitle>International journal of circuit theory and applications</jtitle><date>2024-08-21</date><risdate>2024</risdate><issn>0098-9886</issn><eissn>1097-007X</eissn><abstract>Wind energy production systems (WEPS) are increasingly vital in the transition to renewable energy sources, with permanent magnetic synchronous generators (PMSG) being widely adopted due to their high efficiency and reliability. Developing robust control methods is essential to ensure that WEPS operate efficiently even under adverse conditions. This study focuses on optimizing control strategies for WEPS utilizing a 5‐phase PMSG and addresses challenges posed by double‐phase open fault (DPOF) scenarios. Unlike conventional second‐order sliding mode control (SOSMC) based on the super‐twisting algorithm (STA), the proposed method enhances performance by elevating the sliding surface time derivative degree to a third order and modifying the discontinuous term of STA with an arctangent function, promising to reduce chattering effects. Additionally, an adaptation law adjusts the improved STA gains, forming adaptive‐gain third‐order sliding mode control (AG‐TOSMC), which outperforms SOSMC under various disturbances such as wind speed fluctuations, parameter changes, and DPOF scenarios. The AG‐TOSMC enhances the quality of active and reactive power by reducing fluctuation ratios compared with the SOSMC. The efficiency of WEPS increases to 98.5% with AG‐TOSMC, surpassing the 93.5% achieved with SOSMC. Additionally, a DPOF test confirms the aptitude of the 5‐phase PMSG to work under degraded circumstances, supplying appropriate electrical power to the network without significant adverse effects. Numerical simulations validate the efficiency of the suggested WEPS and its control, demonstrating superior performance achieved with AG‐TOSMC.</abstract><doi>10.1002/cta.4253</doi><orcidid>https://orcid.org/0000-0002-3002-4316</orcidid><orcidid>https://orcid.org/0000-0002-1047-3843</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0098-9886
ispartof International journal of circuit theory and applications, 2024-08
issn 0098-9886
1097-007X
language eng
recordid cdi_crossref_primary_10_1002_cta_4253
source Wiley Online Library Journals Frontfile Complete
title Modified third‐order sliding mode control with adaptive gains for a multiphase PMSG wind turbine under double‐phase open fault
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T02%3A15%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20third%E2%80%90order%20sliding%20mode%20control%20with%20adaptive%20gains%20for%20a%20multiphase%20PMSG%20wind%20turbine%20under%20double%E2%80%90phase%20open%20fault&rft.jtitle=International%20journal%20of%20circuit%20theory%20and%20applications&rft.au=Bounadja,%20Elhadj&rft.date=2024-08-21&rft.issn=0098-9886&rft.eissn=1097-007X&rft_id=info:doi/10.1002/cta.4253&rft_dat=%3Ccrossref%3E10_1002_cta_4253%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true