A CNN framework for modeling parallel processing in a mammalian retina
We present here a simple multi‐layer cellular neural/non‐linear network (CNN) model of the mammalian retina, capable of implementation on CNN Universal Machine (CNN‐UM) chips. The basis of the model is a simple multi‐layer cellular neural/non‐linear Network (IEEE Trans. Circuits Systems 1988; 35:125...
Gespeichert in:
Veröffentlicht in: | International journal of circuit theory and applications 2002-03, Vol.30 (2-3), p.363-393 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 393 |
---|---|
container_issue | 2-3 |
container_start_page | 363 |
container_title | International journal of circuit theory and applications |
container_volume | 30 |
creator | Bálya, Dávid Roska, Botond Roska, Tamás Werblin, Frank S. |
description | We present here a simple multi‐layer cellular neural/non‐linear network (CNN) model of the mammalian retina, capable of implementation on CNN Universal Machine (CNN‐UM) chips. The basis of the model is a simple multi‐layer cellular neural/non‐linear Network (IEEE Trans. Circuits Systems 1988; 35:1257; IEEE Trans. Circuits Systems 1993; 40:147). The characterization of the elements in the CNN model is based on anatomical and physiological studies performed in the rabbit retina. The living mammalian retina represents the visual world in a set of about a dozen different ‘feature detecting’ parallel representations (Nature 2001; 410:583–587). Our CNN model is capable of reproducing qualitatively the same full set of space–time patterns as the living retina in response to a flashed square. The modelling framework can then be used to predict the set of retinal responses to more complex patterns and is also applicable to studies of the other biological sensory systems. The work represents a major step forward in the complexity and programmability of retinal models. Copyright © 2002 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/cta.204 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cta_204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CTA204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3634-e752c704355d827985e03a925575c51e969162773d5972f48a6f69fb2ac79db03</originalsourceid><addsrcrecordid>eNp1z8FLwzAUx_EgCs4p_gu5eZDO16RpkuMobgpzokwUL-GtTaQubUcy2Pbfu1Hx5unB48MPvoRcpzBKAdhducERg-yEDFLQMgGQH6dkAKBVopXKz8lFjN8AoBjXAzIZ02I-py5gY7ddWFHXBdp0lfV1-0XXGNB76-k6dKWN8firW4q0waZBX2NLg93ULV6SM4c-2qvfOyRvk_tF8ZDMnqePxXiWlDznWWKlYKWEjAtRKSa1EhY4aiaEFKVIrc51mjMpeSW0ZC5TmLtcuyXDUupqCXxIbvrdMnQxBuvMOtQNhr1JwRzzzSHfHPIP8raX29rb_X_MFItxr5Ne13Fjd38aw8rkkkth3udTM_185dkLm5kn_gMHTWic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A CNN framework for modeling parallel processing in a mammalian retina</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bálya, Dávid ; Roska, Botond ; Roska, Tamás ; Werblin, Frank S.</creator><creatorcontrib>Bálya, Dávid ; Roska, Botond ; Roska, Tamás ; Werblin, Frank S.</creatorcontrib><description>We present here a simple multi‐layer cellular neural/non‐linear network (CNN) model of the mammalian retina, capable of implementation on CNN Universal Machine (CNN‐UM) chips. The basis of the model is a simple multi‐layer cellular neural/non‐linear Network (IEEE Trans. Circuits Systems 1988; 35:1257; IEEE Trans. Circuits Systems 1993; 40:147). The characterization of the elements in the CNN model is based on anatomical and physiological studies performed in the rabbit retina. The living mammalian retina represents the visual world in a set of about a dozen different ‘feature detecting’ parallel representations (Nature 2001; 410:583–587). Our CNN model is capable of reproducing qualitatively the same full set of space–time patterns as the living retina in response to a flashed square. The modelling framework can then be used to predict the set of retinal responses to more complex patterns and is also applicable to studies of the other biological sensory systems. The work represents a major step forward in the complexity and programmability of retinal models. Copyright © 2002 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0098-9886</identifier><identifier>EISSN: 1097-007X</identifier><identifier>DOI: 10.1002/cta.204</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>cellular neural network ; inner retina ; mammalian retina ; multi-layer template ; programmable CNN-UM chip ; retina modelling ; spatial-temporal patterns</subject><ispartof>International journal of circuit theory and applications, 2002-03, Vol.30 (2-3), p.363-393</ispartof><rights>Copyright © 2002 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3634-e752c704355d827985e03a925575c51e969162773d5972f48a6f69fb2ac79db03</citedby><cites>FETCH-LOGICAL-c3634-e752c704355d827985e03a925575c51e969162773d5972f48a6f69fb2ac79db03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcta.204$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcta.204$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Bálya, Dávid</creatorcontrib><creatorcontrib>Roska, Botond</creatorcontrib><creatorcontrib>Roska, Tamás</creatorcontrib><creatorcontrib>Werblin, Frank S.</creatorcontrib><title>A CNN framework for modeling parallel processing in a mammalian retina</title><title>International journal of circuit theory and applications</title><addtitle>Int. J. Circ. Theor. Appl</addtitle><description>We present here a simple multi‐layer cellular neural/non‐linear network (CNN) model of the mammalian retina, capable of implementation on CNN Universal Machine (CNN‐UM) chips. The basis of the model is a simple multi‐layer cellular neural/non‐linear Network (IEEE Trans. Circuits Systems 1988; 35:1257; IEEE Trans. Circuits Systems 1993; 40:147). The characterization of the elements in the CNN model is based on anatomical and physiological studies performed in the rabbit retina. The living mammalian retina represents the visual world in a set of about a dozen different ‘feature detecting’ parallel representations (Nature 2001; 410:583–587). Our CNN model is capable of reproducing qualitatively the same full set of space–time patterns as the living retina in response to a flashed square. The modelling framework can then be used to predict the set of retinal responses to more complex patterns and is also applicable to studies of the other biological sensory systems. The work represents a major step forward in the complexity and programmability of retinal models. Copyright © 2002 John Wiley & Sons, Ltd.</description><subject>cellular neural network</subject><subject>inner retina</subject><subject>mammalian retina</subject><subject>multi-layer template</subject><subject>programmable CNN-UM chip</subject><subject>retina modelling</subject><subject>spatial-temporal patterns</subject><issn>0098-9886</issn><issn>1097-007X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1z8FLwzAUx_EgCs4p_gu5eZDO16RpkuMobgpzokwUL-GtTaQubUcy2Pbfu1Hx5unB48MPvoRcpzBKAdhducERg-yEDFLQMgGQH6dkAKBVopXKz8lFjN8AoBjXAzIZ02I-py5gY7ddWFHXBdp0lfV1-0XXGNB76-k6dKWN8firW4q0waZBX2NLg93ULV6SM4c-2qvfOyRvk_tF8ZDMnqePxXiWlDznWWKlYKWEjAtRKSa1EhY4aiaEFKVIrc51mjMpeSW0ZC5TmLtcuyXDUupqCXxIbvrdMnQxBuvMOtQNhr1JwRzzzSHfHPIP8raX29rb_X_MFItxr5Ne13Fjd38aw8rkkkth3udTM_185dkLm5kn_gMHTWic</recordid><startdate>200203</startdate><enddate>200203</enddate><creator>Bálya, Dávid</creator><creator>Roska, Botond</creator><creator>Roska, Tamás</creator><creator>Werblin, Frank S.</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200203</creationdate><title>A CNN framework for modeling parallel processing in a mammalian retina</title><author>Bálya, Dávid ; Roska, Botond ; Roska, Tamás ; Werblin, Frank S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3634-e752c704355d827985e03a925575c51e969162773d5972f48a6f69fb2ac79db03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>cellular neural network</topic><topic>inner retina</topic><topic>mammalian retina</topic><topic>multi-layer template</topic><topic>programmable CNN-UM chip</topic><topic>retina modelling</topic><topic>spatial-temporal patterns</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bálya, Dávid</creatorcontrib><creatorcontrib>Roska, Botond</creatorcontrib><creatorcontrib>Roska, Tamás</creatorcontrib><creatorcontrib>Werblin, Frank S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>International journal of circuit theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bálya, Dávid</au><au>Roska, Botond</au><au>Roska, Tamás</au><au>Werblin, Frank S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A CNN framework for modeling parallel processing in a mammalian retina</atitle><jtitle>International journal of circuit theory and applications</jtitle><addtitle>Int. J. Circ. Theor. Appl</addtitle><date>2002-03</date><risdate>2002</risdate><volume>30</volume><issue>2-3</issue><spage>363</spage><epage>393</epage><pages>363-393</pages><issn>0098-9886</issn><eissn>1097-007X</eissn><abstract>We present here a simple multi‐layer cellular neural/non‐linear network (CNN) model of the mammalian retina, capable of implementation on CNN Universal Machine (CNN‐UM) chips. The basis of the model is a simple multi‐layer cellular neural/non‐linear Network (IEEE Trans. Circuits Systems 1988; 35:1257; IEEE Trans. Circuits Systems 1993; 40:147). The characterization of the elements in the CNN model is based on anatomical and physiological studies performed in the rabbit retina. The living mammalian retina represents the visual world in a set of about a dozen different ‘feature detecting’ parallel representations (Nature 2001; 410:583–587). Our CNN model is capable of reproducing qualitatively the same full set of space–time patterns as the living retina in response to a flashed square. The modelling framework can then be used to predict the set of retinal responses to more complex patterns and is also applicable to studies of the other biological sensory systems. The work represents a major step forward in the complexity and programmability of retinal models. Copyright © 2002 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/cta.204</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-9886 |
ispartof | International journal of circuit theory and applications, 2002-03, Vol.30 (2-3), p.363-393 |
issn | 0098-9886 1097-007X |
language | eng |
recordid | cdi_crossref_primary_10_1002_cta_204 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | cellular neural network inner retina mammalian retina multi-layer template programmable CNN-UM chip retina modelling spatial-temporal patterns |
title | A CNN framework for modeling parallel processing in a mammalian retina |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20CNN%20framework%20for%20modeling%20parallel%20processing%20in%20a%20mammalian%20retina&rft.jtitle=International%20journal%20of%20circuit%20theory%20and%20applications&rft.au=B%C3%A1lya,%20D%C3%A1vid&rft.date=2002-03&rft.volume=30&rft.issue=2-3&rft.spage=363&rft.epage=393&rft.pages=363-393&rft.issn=0098-9886&rft.eissn=1097-007X&rft_id=info:doi/10.1002/cta.204&rft_dat=%3Cwiley_cross%3ECTA204%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |