A CNN framework for modeling parallel processing in a mammalian retina

We present here a simple multi‐layer cellular neural/non‐linear network (CNN) model of the mammalian retina, capable of implementation on CNN Universal Machine (CNN‐UM) chips. The basis of the model is a simple multi‐layer cellular neural/non‐linear Network (IEEE Trans. Circuits Systems 1988; 35:125...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of circuit theory and applications 2002-03, Vol.30 (2-3), p.363-393
Hauptverfasser: Bálya, Dávid, Roska, Botond, Roska, Tamás, Werblin, Frank S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 393
container_issue 2-3
container_start_page 363
container_title International journal of circuit theory and applications
container_volume 30
creator Bálya, Dávid
Roska, Botond
Roska, Tamás
Werblin, Frank S.
description We present here a simple multi‐layer cellular neural/non‐linear network (CNN) model of the mammalian retina, capable of implementation on CNN Universal Machine (CNN‐UM) chips. The basis of the model is a simple multi‐layer cellular neural/non‐linear Network (IEEE Trans. Circuits Systems 1988; 35:1257; IEEE Trans. Circuits Systems 1993; 40:147). The characterization of the elements in the CNN model is based on anatomical and physiological studies performed in the rabbit retina. The living mammalian retina represents the visual world in a set of about a dozen different ‘feature detecting’ parallel representations (Nature 2001; 410:583–587). Our CNN model is capable of reproducing qualitatively the same full set of space–time patterns as the living retina in response to a flashed square. The modelling framework can then be used to predict the set of retinal responses to more complex patterns and is also applicable to studies of the other biological sensory systems. The work represents a major step forward in the complexity and programmability of retinal models. Copyright © 2002 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/cta.204
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cta_204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CTA204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3634-e752c704355d827985e03a925575c51e969162773d5972f48a6f69fb2ac79db03</originalsourceid><addsrcrecordid>eNp1z8FLwzAUx_EgCs4p_gu5eZDO16RpkuMobgpzokwUL-GtTaQubUcy2Pbfu1Hx5unB48MPvoRcpzBKAdhducERg-yEDFLQMgGQH6dkAKBVopXKz8lFjN8AoBjXAzIZ02I-py5gY7ddWFHXBdp0lfV1-0XXGNB76-k6dKWN8firW4q0waZBX2NLg93ULV6SM4c-2qvfOyRvk_tF8ZDMnqePxXiWlDznWWKlYKWEjAtRKSa1EhY4aiaEFKVIrc51mjMpeSW0ZC5TmLtcuyXDUupqCXxIbvrdMnQxBuvMOtQNhr1JwRzzzSHfHPIP8raX29rb_X_MFItxr5Ne13Fjd38aw8rkkkth3udTM_185dkLm5kn_gMHTWic</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A CNN framework for modeling parallel processing in a mammalian retina</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bálya, Dávid ; Roska, Botond ; Roska, Tamás ; Werblin, Frank S.</creator><creatorcontrib>Bálya, Dávid ; Roska, Botond ; Roska, Tamás ; Werblin, Frank S.</creatorcontrib><description>We present here a simple multi‐layer cellular neural/non‐linear network (CNN) model of the mammalian retina, capable of implementation on CNN Universal Machine (CNN‐UM) chips. The basis of the model is a simple multi‐layer cellular neural/non‐linear Network (IEEE Trans. Circuits Systems 1988; 35:1257; IEEE Trans. Circuits Systems 1993; 40:147). The characterization of the elements in the CNN model is based on anatomical and physiological studies performed in the rabbit retina. The living mammalian retina represents the visual world in a set of about a dozen different ‘feature detecting’ parallel representations (Nature 2001; 410:583–587). Our CNN model is capable of reproducing qualitatively the same full set of space–time patterns as the living retina in response to a flashed square. The modelling framework can then be used to predict the set of retinal responses to more complex patterns and is also applicable to studies of the other biological sensory systems. The work represents a major step forward in the complexity and programmability of retinal models. Copyright © 2002 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0098-9886</identifier><identifier>EISSN: 1097-007X</identifier><identifier>DOI: 10.1002/cta.204</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>cellular neural network ; inner retina ; mammalian retina ; multi-layer template ; programmable CNN-UM chip ; retina modelling ; spatial-temporal patterns</subject><ispartof>International journal of circuit theory and applications, 2002-03, Vol.30 (2-3), p.363-393</ispartof><rights>Copyright © 2002 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3634-e752c704355d827985e03a925575c51e969162773d5972f48a6f69fb2ac79db03</citedby><cites>FETCH-LOGICAL-c3634-e752c704355d827985e03a925575c51e969162773d5972f48a6f69fb2ac79db03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcta.204$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcta.204$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Bálya, Dávid</creatorcontrib><creatorcontrib>Roska, Botond</creatorcontrib><creatorcontrib>Roska, Tamás</creatorcontrib><creatorcontrib>Werblin, Frank S.</creatorcontrib><title>A CNN framework for modeling parallel processing in a mammalian retina</title><title>International journal of circuit theory and applications</title><addtitle>Int. J. Circ. Theor. Appl</addtitle><description>We present here a simple multi‐layer cellular neural/non‐linear network (CNN) model of the mammalian retina, capable of implementation on CNN Universal Machine (CNN‐UM) chips. The basis of the model is a simple multi‐layer cellular neural/non‐linear Network (IEEE Trans. Circuits Systems 1988; 35:1257; IEEE Trans. Circuits Systems 1993; 40:147). The characterization of the elements in the CNN model is based on anatomical and physiological studies performed in the rabbit retina. The living mammalian retina represents the visual world in a set of about a dozen different ‘feature detecting’ parallel representations (Nature 2001; 410:583–587). Our CNN model is capable of reproducing qualitatively the same full set of space–time patterns as the living retina in response to a flashed square. The modelling framework can then be used to predict the set of retinal responses to more complex patterns and is also applicable to studies of the other biological sensory systems. The work represents a major step forward in the complexity and programmability of retinal models. Copyright © 2002 John Wiley &amp; Sons, Ltd.</description><subject>cellular neural network</subject><subject>inner retina</subject><subject>mammalian retina</subject><subject>multi-layer template</subject><subject>programmable CNN-UM chip</subject><subject>retina modelling</subject><subject>spatial-temporal patterns</subject><issn>0098-9886</issn><issn>1097-007X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1z8FLwzAUx_EgCs4p_gu5eZDO16RpkuMobgpzokwUL-GtTaQubUcy2Pbfu1Hx5unB48MPvoRcpzBKAdhducERg-yEDFLQMgGQH6dkAKBVopXKz8lFjN8AoBjXAzIZ02I-py5gY7ddWFHXBdp0lfV1-0XXGNB76-k6dKWN8firW4q0waZBX2NLg93ULV6SM4c-2qvfOyRvk_tF8ZDMnqePxXiWlDznWWKlYKWEjAtRKSa1EhY4aiaEFKVIrc51mjMpeSW0ZC5TmLtcuyXDUupqCXxIbvrdMnQxBuvMOtQNhr1JwRzzzSHfHPIP8raX29rb_X_MFItxr5Ne13Fjd38aw8rkkkth3udTM_185dkLm5kn_gMHTWic</recordid><startdate>200203</startdate><enddate>200203</enddate><creator>Bálya, Dávid</creator><creator>Roska, Botond</creator><creator>Roska, Tamás</creator><creator>Werblin, Frank S.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200203</creationdate><title>A CNN framework for modeling parallel processing in a mammalian retina</title><author>Bálya, Dávid ; Roska, Botond ; Roska, Tamás ; Werblin, Frank S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3634-e752c704355d827985e03a925575c51e969162773d5972f48a6f69fb2ac79db03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>cellular neural network</topic><topic>inner retina</topic><topic>mammalian retina</topic><topic>multi-layer template</topic><topic>programmable CNN-UM chip</topic><topic>retina modelling</topic><topic>spatial-temporal patterns</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bálya, Dávid</creatorcontrib><creatorcontrib>Roska, Botond</creatorcontrib><creatorcontrib>Roska, Tamás</creatorcontrib><creatorcontrib>Werblin, Frank S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>International journal of circuit theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bálya, Dávid</au><au>Roska, Botond</au><au>Roska, Tamás</au><au>Werblin, Frank S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A CNN framework for modeling parallel processing in a mammalian retina</atitle><jtitle>International journal of circuit theory and applications</jtitle><addtitle>Int. J. Circ. Theor. Appl</addtitle><date>2002-03</date><risdate>2002</risdate><volume>30</volume><issue>2-3</issue><spage>363</spage><epage>393</epage><pages>363-393</pages><issn>0098-9886</issn><eissn>1097-007X</eissn><abstract>We present here a simple multi‐layer cellular neural/non‐linear network (CNN) model of the mammalian retina, capable of implementation on CNN Universal Machine (CNN‐UM) chips. The basis of the model is a simple multi‐layer cellular neural/non‐linear Network (IEEE Trans. Circuits Systems 1988; 35:1257; IEEE Trans. Circuits Systems 1993; 40:147). The characterization of the elements in the CNN model is based on anatomical and physiological studies performed in the rabbit retina. The living mammalian retina represents the visual world in a set of about a dozen different ‘feature detecting’ parallel representations (Nature 2001; 410:583–587). Our CNN model is capable of reproducing qualitatively the same full set of space–time patterns as the living retina in response to a flashed square. The modelling framework can then be used to predict the set of retinal responses to more complex patterns and is also applicable to studies of the other biological sensory systems. The work represents a major step forward in the complexity and programmability of retinal models. Copyright © 2002 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/cta.204</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-9886
ispartof International journal of circuit theory and applications, 2002-03, Vol.30 (2-3), p.363-393
issn 0098-9886
1097-007X
language eng
recordid cdi_crossref_primary_10_1002_cta_204
source Wiley Online Library Journals Frontfile Complete
subjects cellular neural network
inner retina
mammalian retina
multi-layer template
programmable CNN-UM chip
retina modelling
spatial-temporal patterns
title A CNN framework for modeling parallel processing in a mammalian retina
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20CNN%20framework%20for%20modeling%20parallel%20processing%20in%20a%20mammalian%20retina&rft.jtitle=International%20journal%20of%20circuit%20theory%20and%20applications&rft.au=B%C3%A1lya,%20D%C3%A1vid&rft.date=2002-03&rft.volume=30&rft.issue=2-3&rft.spage=363&rft.epage=393&rft.pages=363-393&rft.issn=0098-9886&rft.eissn=1097-007X&rft_id=info:doi/10.1002/cta.204&rft_dat=%3Cwiley_cross%3ECTA204%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true