Synthetic Enzyme-Catalyzed CO 2 Fixation Reactions

In recent years, (de)carboxylases that catalyze reversible (de)carboxylation have been targeted for application as carboxylation catalysts. This has led to the development of proof-of-concept (bio)synthetic CO fixation routes for chemical production. However, further progress towards industrial appl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2021-04, Vol.14 (8), p.1781-1804
Hauptverfasser: Aleku, Godwin A, Roberts, George W, Titchiner, Gabriel R, Leys, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1804
container_issue 8
container_start_page 1781
container_title ChemSusChem
container_volume 14
creator Aleku, Godwin A
Roberts, George W
Titchiner, Gabriel R
Leys, David
description In recent years, (de)carboxylases that catalyze reversible (de)carboxylation have been targeted for application as carboxylation catalysts. This has led to the development of proof-of-concept (bio)synthetic CO fixation routes for chemical production. However, further progress towards industrial application has been hampered by the thermodynamic constraint that accompanies fixing CO to organic molecules. In this Review, biocatalytic carboxylation methods are discussed with emphases on the diverse strategies devised to alleviate the inherent thermodynamic constraints and their application in synthetic CO -fixation cascades.
doi_str_mv 10.1002/cssc.202100159
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cssc_202100159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33631048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1078-541b64b491719db8bd24368517a0025867676e2da2e845718dfdc7af27b08143</originalsourceid><addsrcrecordid>eNo9j0tLw1AQhS-i2FrdupT8gcSZ-85SQqtCoaBduAv3FYw0acmNYPrrTaiWWcyZYc5hPkLuETIEoI8uRpdRoOOAIr8gc9SSp0Lyj8uzZjgjNzF-AUjIpbwmM8bGJXA9J_R9aPvP0NcuWbbHoQlpYXqzG47BJ8Umocmq_jF9vW-Tt2DcJOItuarMLoa7v74g29VyW7yk683za_G0Th2C0qngaCW3PEeFubfaesqZ1AKVGR8XWqqxAvWGBs2FQu0r75SpqLKgkbMFyU6xrtvH2IWqPHR1Y7qhRCgn9nJiL8_so-HhZDh82yb48_k_LPsFgJdS5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synthetic Enzyme-Catalyzed CO 2 Fixation Reactions</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Aleku, Godwin A ; Roberts, George W ; Titchiner, Gabriel R ; Leys, David</creator><creatorcontrib>Aleku, Godwin A ; Roberts, George W ; Titchiner, Gabriel R ; Leys, David</creatorcontrib><description>In recent years, (de)carboxylases that catalyze reversible (de)carboxylation have been targeted for application as carboxylation catalysts. This has led to the development of proof-of-concept (bio)synthetic CO fixation routes for chemical production. However, further progress towards industrial application has been hampered by the thermodynamic constraint that accompanies fixing CO to organic molecules. In this Review, biocatalytic carboxylation methods are discussed with emphases on the diverse strategies devised to alleviate the inherent thermodynamic constraints and their application in synthetic CO -fixation cascades.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.202100159</identifier><identifier>PMID: 33631048</identifier><language>eng</language><publisher>Germany</publisher><subject>Biocatalysis ; Biotin - chemistry ; Carbon Dioxide - chemistry ; Carboxy-Lyases - chemistry ; Carboxy-Lyases - metabolism ; Dinitrocresols - chemistry ; Metals - chemistry ; Molecular Structure ; Pyridoxal - chemistry ; Structure-Activity Relationship ; Thermodynamics ; Thiamine Pyrophosphate - chemistry</subject><ispartof>ChemSusChem, 2021-04, Vol.14 (8), p.1781-1804</ispartof><rights>2021 The Authors. ChemSusChem published by Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1078-541b64b491719db8bd24368517a0025867676e2da2e845718dfdc7af27b08143</citedby><cites>FETCH-LOGICAL-c1078-541b64b491719db8bd24368517a0025867676e2da2e845718dfdc7af27b08143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33631048$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aleku, Godwin A</creatorcontrib><creatorcontrib>Roberts, George W</creatorcontrib><creatorcontrib>Titchiner, Gabriel R</creatorcontrib><creatorcontrib>Leys, David</creatorcontrib><title>Synthetic Enzyme-Catalyzed CO 2 Fixation Reactions</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>In recent years, (de)carboxylases that catalyze reversible (de)carboxylation have been targeted for application as carboxylation catalysts. This has led to the development of proof-of-concept (bio)synthetic CO fixation routes for chemical production. However, further progress towards industrial application has been hampered by the thermodynamic constraint that accompanies fixing CO to organic molecules. In this Review, biocatalytic carboxylation methods are discussed with emphases on the diverse strategies devised to alleviate the inherent thermodynamic constraints and their application in synthetic CO -fixation cascades.</description><subject>Biocatalysis</subject><subject>Biotin - chemistry</subject><subject>Carbon Dioxide - chemistry</subject><subject>Carboxy-Lyases - chemistry</subject><subject>Carboxy-Lyases - metabolism</subject><subject>Dinitrocresols - chemistry</subject><subject>Metals - chemistry</subject><subject>Molecular Structure</subject><subject>Pyridoxal - chemistry</subject><subject>Structure-Activity Relationship</subject><subject>Thermodynamics</subject><subject>Thiamine Pyrophosphate - chemistry</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9j0tLw1AQhS-i2FrdupT8gcSZ-85SQqtCoaBduAv3FYw0acmNYPrrTaiWWcyZYc5hPkLuETIEoI8uRpdRoOOAIr8gc9SSp0Lyj8uzZjgjNzF-AUjIpbwmM8bGJXA9J_R9aPvP0NcuWbbHoQlpYXqzG47BJ8Umocmq_jF9vW-Tt2DcJOItuarMLoa7v74g29VyW7yk683za_G0Th2C0qngaCW3PEeFubfaesqZ1AKVGR8XWqqxAvWGBs2FQu0r75SpqLKgkbMFyU6xrtvH2IWqPHR1Y7qhRCgn9nJiL8_so-HhZDh82yb48_k_LPsFgJdS5Q</recordid><startdate>20210422</startdate><enddate>20210422</enddate><creator>Aleku, Godwin A</creator><creator>Roberts, George W</creator><creator>Titchiner, Gabriel R</creator><creator>Leys, David</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210422</creationdate><title>Synthetic Enzyme-Catalyzed CO 2 Fixation Reactions</title><author>Aleku, Godwin A ; Roberts, George W ; Titchiner, Gabriel R ; Leys, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1078-541b64b491719db8bd24368517a0025867676e2da2e845718dfdc7af27b08143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biocatalysis</topic><topic>Biotin - chemistry</topic><topic>Carbon Dioxide - chemistry</topic><topic>Carboxy-Lyases - chemistry</topic><topic>Carboxy-Lyases - metabolism</topic><topic>Dinitrocresols - chemistry</topic><topic>Metals - chemistry</topic><topic>Molecular Structure</topic><topic>Pyridoxal - chemistry</topic><topic>Structure-Activity Relationship</topic><topic>Thermodynamics</topic><topic>Thiamine Pyrophosphate - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aleku, Godwin A</creatorcontrib><creatorcontrib>Roberts, George W</creatorcontrib><creatorcontrib>Titchiner, Gabriel R</creatorcontrib><creatorcontrib>Leys, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aleku, Godwin A</au><au>Roberts, George W</au><au>Titchiner, Gabriel R</au><au>Leys, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic Enzyme-Catalyzed CO 2 Fixation Reactions</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2021-04-22</date><risdate>2021</risdate><volume>14</volume><issue>8</issue><spage>1781</spage><epage>1804</epage><pages>1781-1804</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>In recent years, (de)carboxylases that catalyze reversible (de)carboxylation have been targeted for application as carboxylation catalysts. This has led to the development of proof-of-concept (bio)synthetic CO fixation routes for chemical production. However, further progress towards industrial application has been hampered by the thermodynamic constraint that accompanies fixing CO to organic molecules. In this Review, biocatalytic carboxylation methods are discussed with emphases on the diverse strategies devised to alleviate the inherent thermodynamic constraints and their application in synthetic CO -fixation cascades.</abstract><cop>Germany</cop><pmid>33631048</pmid><doi>10.1002/cssc.202100159</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2021-04, Vol.14 (8), p.1781-1804
issn 1864-5631
1864-564X
language eng
recordid cdi_crossref_primary_10_1002_cssc_202100159
source MEDLINE; Access via Wiley Online Library
subjects Biocatalysis
Biotin - chemistry
Carbon Dioxide - chemistry
Carboxy-Lyases - chemistry
Carboxy-Lyases - metabolism
Dinitrocresols - chemistry
Metals - chemistry
Molecular Structure
Pyridoxal - chemistry
Structure-Activity Relationship
Thermodynamics
Thiamine Pyrophosphate - chemistry
title Synthetic Enzyme-Catalyzed CO 2 Fixation Reactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A10%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20Enzyme-Catalyzed%20CO%202%20Fixation%20Reactions&rft.jtitle=ChemSusChem&rft.au=Aleku,%20Godwin%20A&rft.date=2021-04-22&rft.volume=14&rft.issue=8&rft.spage=1781&rft.epage=1804&rft.pages=1781-1804&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.202100159&rft_dat=%3Cpubmed_cross%3E33631048%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33631048&rfr_iscdi=true