Synthetic Enzyme-Catalyzed CO 2 Fixation Reactions
In recent years, (de)carboxylases that catalyze reversible (de)carboxylation have been targeted for application as carboxylation catalysts. This has led to the development of proof-of-concept (bio)synthetic CO fixation routes for chemical production. However, further progress towards industrial appl...
Gespeichert in:
Veröffentlicht in: | ChemSusChem 2021-04, Vol.14 (8), p.1781-1804 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1804 |
---|---|
container_issue | 8 |
container_start_page | 1781 |
container_title | ChemSusChem |
container_volume | 14 |
creator | Aleku, Godwin A Roberts, George W Titchiner, Gabriel R Leys, David |
description | In recent years, (de)carboxylases that catalyze reversible (de)carboxylation have been targeted for application as carboxylation catalysts. This has led to the development of proof-of-concept (bio)synthetic CO
fixation routes for chemical production. However, further progress towards industrial application has been hampered by the thermodynamic constraint that accompanies fixing CO
to organic molecules. In this Review, biocatalytic carboxylation methods are discussed with emphases on the diverse strategies devised to alleviate the inherent thermodynamic constraints and their application in synthetic CO
-fixation cascades. |
doi_str_mv | 10.1002/cssc.202100159 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cssc_202100159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33631048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1078-541b64b491719db8bd24368517a0025867676e2da2e845718dfdc7af27b08143</originalsourceid><addsrcrecordid>eNo9j0tLw1AQhS-i2FrdupT8gcSZ-85SQqtCoaBduAv3FYw0acmNYPrrTaiWWcyZYc5hPkLuETIEoI8uRpdRoOOAIr8gc9SSp0Lyj8uzZjgjNzF-AUjIpbwmM8bGJXA9J_R9aPvP0NcuWbbHoQlpYXqzG47BJ8Umocmq_jF9vW-Tt2DcJOItuarMLoa7v74g29VyW7yk683za_G0Th2C0qngaCW3PEeFubfaesqZ1AKVGR8XWqqxAvWGBs2FQu0r75SpqLKgkbMFyU6xrtvH2IWqPHR1Y7qhRCgn9nJiL8_so-HhZDh82yb48_k_LPsFgJdS5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synthetic Enzyme-Catalyzed CO 2 Fixation Reactions</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Aleku, Godwin A ; Roberts, George W ; Titchiner, Gabriel R ; Leys, David</creator><creatorcontrib>Aleku, Godwin A ; Roberts, George W ; Titchiner, Gabriel R ; Leys, David</creatorcontrib><description>In recent years, (de)carboxylases that catalyze reversible (de)carboxylation have been targeted for application as carboxylation catalysts. This has led to the development of proof-of-concept (bio)synthetic CO
fixation routes for chemical production. However, further progress towards industrial application has been hampered by the thermodynamic constraint that accompanies fixing CO
to organic molecules. In this Review, biocatalytic carboxylation methods are discussed with emphases on the diverse strategies devised to alleviate the inherent thermodynamic constraints and their application in synthetic CO
-fixation cascades.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.202100159</identifier><identifier>PMID: 33631048</identifier><language>eng</language><publisher>Germany</publisher><subject>Biocatalysis ; Biotin - chemistry ; Carbon Dioxide - chemistry ; Carboxy-Lyases - chemistry ; Carboxy-Lyases - metabolism ; Dinitrocresols - chemistry ; Metals - chemistry ; Molecular Structure ; Pyridoxal - chemistry ; Structure-Activity Relationship ; Thermodynamics ; Thiamine Pyrophosphate - chemistry</subject><ispartof>ChemSusChem, 2021-04, Vol.14 (8), p.1781-1804</ispartof><rights>2021 The Authors. ChemSusChem published by Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1078-541b64b491719db8bd24368517a0025867676e2da2e845718dfdc7af27b08143</citedby><cites>FETCH-LOGICAL-c1078-541b64b491719db8bd24368517a0025867676e2da2e845718dfdc7af27b08143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33631048$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aleku, Godwin A</creatorcontrib><creatorcontrib>Roberts, George W</creatorcontrib><creatorcontrib>Titchiner, Gabriel R</creatorcontrib><creatorcontrib>Leys, David</creatorcontrib><title>Synthetic Enzyme-Catalyzed CO 2 Fixation Reactions</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>In recent years, (de)carboxylases that catalyze reversible (de)carboxylation have been targeted for application as carboxylation catalysts. This has led to the development of proof-of-concept (bio)synthetic CO
fixation routes for chemical production. However, further progress towards industrial application has been hampered by the thermodynamic constraint that accompanies fixing CO
to organic molecules. In this Review, biocatalytic carboxylation methods are discussed with emphases on the diverse strategies devised to alleviate the inherent thermodynamic constraints and their application in synthetic CO
-fixation cascades.</description><subject>Biocatalysis</subject><subject>Biotin - chemistry</subject><subject>Carbon Dioxide - chemistry</subject><subject>Carboxy-Lyases - chemistry</subject><subject>Carboxy-Lyases - metabolism</subject><subject>Dinitrocresols - chemistry</subject><subject>Metals - chemistry</subject><subject>Molecular Structure</subject><subject>Pyridoxal - chemistry</subject><subject>Structure-Activity Relationship</subject><subject>Thermodynamics</subject><subject>Thiamine Pyrophosphate - chemistry</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9j0tLw1AQhS-i2FrdupT8gcSZ-85SQqtCoaBduAv3FYw0acmNYPrrTaiWWcyZYc5hPkLuETIEoI8uRpdRoOOAIr8gc9SSp0Lyj8uzZjgjNzF-AUjIpbwmM8bGJXA9J_R9aPvP0NcuWbbHoQlpYXqzG47BJ8Umocmq_jF9vW-Tt2DcJOItuarMLoa7v74g29VyW7yk683za_G0Th2C0qngaCW3PEeFubfaesqZ1AKVGR8XWqqxAvWGBs2FQu0r75SpqLKgkbMFyU6xrtvH2IWqPHR1Y7qhRCgn9nJiL8_so-HhZDh82yb48_k_LPsFgJdS5Q</recordid><startdate>20210422</startdate><enddate>20210422</enddate><creator>Aleku, Godwin A</creator><creator>Roberts, George W</creator><creator>Titchiner, Gabriel R</creator><creator>Leys, David</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210422</creationdate><title>Synthetic Enzyme-Catalyzed CO 2 Fixation Reactions</title><author>Aleku, Godwin A ; Roberts, George W ; Titchiner, Gabriel R ; Leys, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1078-541b64b491719db8bd24368517a0025867676e2da2e845718dfdc7af27b08143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biocatalysis</topic><topic>Biotin - chemistry</topic><topic>Carbon Dioxide - chemistry</topic><topic>Carboxy-Lyases - chemistry</topic><topic>Carboxy-Lyases - metabolism</topic><topic>Dinitrocresols - chemistry</topic><topic>Metals - chemistry</topic><topic>Molecular Structure</topic><topic>Pyridoxal - chemistry</topic><topic>Structure-Activity Relationship</topic><topic>Thermodynamics</topic><topic>Thiamine Pyrophosphate - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aleku, Godwin A</creatorcontrib><creatorcontrib>Roberts, George W</creatorcontrib><creatorcontrib>Titchiner, Gabriel R</creatorcontrib><creatorcontrib>Leys, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aleku, Godwin A</au><au>Roberts, George W</au><au>Titchiner, Gabriel R</au><au>Leys, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic Enzyme-Catalyzed CO 2 Fixation Reactions</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2021-04-22</date><risdate>2021</risdate><volume>14</volume><issue>8</issue><spage>1781</spage><epage>1804</epage><pages>1781-1804</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>In recent years, (de)carboxylases that catalyze reversible (de)carboxylation have been targeted for application as carboxylation catalysts. This has led to the development of proof-of-concept (bio)synthetic CO
fixation routes for chemical production. However, further progress towards industrial application has been hampered by the thermodynamic constraint that accompanies fixing CO
to organic molecules. In this Review, biocatalytic carboxylation methods are discussed with emphases on the diverse strategies devised to alleviate the inherent thermodynamic constraints and their application in synthetic CO
-fixation cascades.</abstract><cop>Germany</cop><pmid>33631048</pmid><doi>10.1002/cssc.202100159</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1864-5631 |
ispartof | ChemSusChem, 2021-04, Vol.14 (8), p.1781-1804 |
issn | 1864-5631 1864-564X |
language | eng |
recordid | cdi_crossref_primary_10_1002_cssc_202100159 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Biocatalysis Biotin - chemistry Carbon Dioxide - chemistry Carboxy-Lyases - chemistry Carboxy-Lyases - metabolism Dinitrocresols - chemistry Metals - chemistry Molecular Structure Pyridoxal - chemistry Structure-Activity Relationship Thermodynamics Thiamine Pyrophosphate - chemistry |
title | Synthetic Enzyme-Catalyzed CO 2 Fixation Reactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A10%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20Enzyme-Catalyzed%20CO%202%20Fixation%20Reactions&rft.jtitle=ChemSusChem&rft.au=Aleku,%20Godwin%20A&rft.date=2021-04-22&rft.volume=14&rft.issue=8&rft.spage=1781&rft.epage=1804&rft.pages=1781-1804&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.202100159&rft_dat=%3Cpubmed_cross%3E33631048%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33631048&rfr_iscdi=true |