Simple regression models to estimate light interception in wheat crops with Sentinel‐2 and a handheld sensor

Capture of radiation by crop canopies drives growth rate, grain set, and yield. Since the fraction of photosynthetically active radiation absorbed by green area (fAPARg) correlates with normalized difference vegetation index (NDVI), remote sensors have been used to monitor vegetation. With a 10‐m sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crop science 2020-05, Vol.60 (3), p.1607-1616
Hauptverfasser: Pellegrini, Pedro, Cossani, C. Mariano, Bella, Carlos M. Di, Piñeiro, Gervasio, Sadras, Víctor O., Oesterheld, Martín
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1616
container_issue 3
container_start_page 1607
container_title Crop science
container_volume 60
creator Pellegrini, Pedro
Cossani, C. Mariano
Bella, Carlos M. Di
Piñeiro, Gervasio
Sadras, Víctor O.
Oesterheld, Martín
description Capture of radiation by crop canopies drives growth rate, grain set, and yield. Since the fraction of photosynthetically active radiation absorbed by green area (fAPARg) correlates with normalized difference vegetation index (NDVI), remote sensors have been used to monitor vegetation. With a 10‐m spatial resolution and 5‐d revisiting time, the recently launched Sentinel‐2 satellite is a promising tool for fAPARg monitoring. However, the available algorithm to estimate fAPARg is based on simulations of canopy interception of several vegetation types and was never tested in field crops. Handheld sensors, such as GreenSeeker, are another alternative to estimate fAPARg. Our objectives were (a) to test the ability of indices derived from Sentinel‐2 and GreenSeeker NDVI to capture fAPARg of wheat (Triticum aestivum L.) crops, (b) to compare these sensors’ performance against the moderate resolution imaging spectroradiometer (MODIS), and (c) to compare our Sentinel‐2 model estimations with the available algorithm. In wheat fields in the southwest Argentinean Pampas, on several sampling dates, we measured fAPARg with a quantum light sensor and NDVI with a GreenSeeker. We regressed fAPARg measurements with vegetation indices from the different sources and selected the best models. Sentinel‐2 and GreenSeeker NDVI precisely estimated fAPARg, with a performance similar to MODIS (p 
doi_str_mv 10.1002/csc2.20129
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_csc2_20129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CSC220129</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2739-61f46f752998e92e0d14b7303472bf7236e1b68aff86b98b7826815148436a763</originalsourceid><addsrcrecordid>eNp9kM1KxDAUhYMoOI5ufIKshY75aZN0KcU_GHBRBXclbW-mkUxaksAwOx_BZ_RJ7DiuXZ3Ndy73fAhdU7KihLDbLnZsxQhl5Qla0JwXGREFP0ULQijNqOLv5-gixg9CiCxlsUC-ttvJAQ6wCRCjHT3ejj24iNOIISa71Qmws5shYesThA6mdKCsx7sBdMJdGKeIdzYNuAafrAf3_fnFsPY91niYYwDX4wg-juESnRntIlz95RK9Pdy_Vk_Z-uXxubpbZx2TvMwENbkwsmBlqaBkQHqat5ITnkvWGsm4ANoKpY1Roi1VKxUTihY0VzkXWgq-RDfHu_N3MQYwzRTmKWHfUNIcTDUHU82vqRmmR3hnHez_IZuqrtix8wMN9Gw-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simple regression models to estimate light interception in wheat crops with Sentinel‐2 and a handheld sensor</title><source>Wiley Journals</source><source>Alma/SFX Local Collection</source><creator>Pellegrini, Pedro ; Cossani, C. Mariano ; Bella, Carlos M. Di ; Piñeiro, Gervasio ; Sadras, Víctor O. ; Oesterheld, Martín</creator><creatorcontrib>Pellegrini, Pedro ; Cossani, C. Mariano ; Bella, Carlos M. Di ; Piñeiro, Gervasio ; Sadras, Víctor O. ; Oesterheld, Martín</creatorcontrib><description>Capture of radiation by crop canopies drives growth rate, grain set, and yield. Since the fraction of photosynthetically active radiation absorbed by green area (fAPARg) correlates with normalized difference vegetation index (NDVI), remote sensors have been used to monitor vegetation. With a 10‐m spatial resolution and 5‐d revisiting time, the recently launched Sentinel‐2 satellite is a promising tool for fAPARg monitoring. However, the available algorithm to estimate fAPARg is based on simulations of canopy interception of several vegetation types and was never tested in field crops. Handheld sensors, such as GreenSeeker, are another alternative to estimate fAPARg. Our objectives were (a) to test the ability of indices derived from Sentinel‐2 and GreenSeeker NDVI to capture fAPARg of wheat (Triticum aestivum L.) crops, (b) to compare these sensors’ performance against the moderate resolution imaging spectroradiometer (MODIS), and (c) to compare our Sentinel‐2 model estimations with the available algorithm. In wheat fields in the southwest Argentinean Pampas, on several sampling dates, we measured fAPARg with a quantum light sensor and NDVI with a GreenSeeker. We regressed fAPARg measurements with vegetation indices from the different sources and selected the best models. Sentinel‐2 and GreenSeeker NDVI precisely estimated fAPARg, with a performance similar to MODIS (p &lt; .05; RMSD = 0.09, 0.11, and 0.08; R2 = .89, .88, and .95, respectively). The available algorithm to estimate fAPARg with Sentinel‐2 yielded biased estimations, mainly in the lower range of fAPARg. These results suggest that simple models may provide fAPARg estimations with Sentinel‐2 and GreenSeeker in wheat crops with an accuracy suitable for agricultural applications.</description><identifier>ISSN: 0011-183X</identifier><identifier>EISSN: 1435-0653</identifier><identifier>DOI: 10.1002/csc2.20129</identifier><language>eng</language><ispartof>Crop science, 2020-05, Vol.60 (3), p.1607-1616</ispartof><rights>2020 The Authors. Crop Science © 2020 Crop Science Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2739-61f46f752998e92e0d14b7303472bf7236e1b68aff86b98b7826815148436a763</citedby><cites>FETCH-LOGICAL-c2739-61f46f752998e92e0d14b7303472bf7236e1b68aff86b98b7826815148436a763</cites><orcidid>0000-0002-3224-4582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcsc2.20129$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcsc2.20129$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Pellegrini, Pedro</creatorcontrib><creatorcontrib>Cossani, C. Mariano</creatorcontrib><creatorcontrib>Bella, Carlos M. Di</creatorcontrib><creatorcontrib>Piñeiro, Gervasio</creatorcontrib><creatorcontrib>Sadras, Víctor O.</creatorcontrib><creatorcontrib>Oesterheld, Martín</creatorcontrib><title>Simple regression models to estimate light interception in wheat crops with Sentinel‐2 and a handheld sensor</title><title>Crop science</title><description>Capture of radiation by crop canopies drives growth rate, grain set, and yield. Since the fraction of photosynthetically active radiation absorbed by green area (fAPARg) correlates with normalized difference vegetation index (NDVI), remote sensors have been used to monitor vegetation. With a 10‐m spatial resolution and 5‐d revisiting time, the recently launched Sentinel‐2 satellite is a promising tool for fAPARg monitoring. However, the available algorithm to estimate fAPARg is based on simulations of canopy interception of several vegetation types and was never tested in field crops. Handheld sensors, such as GreenSeeker, are another alternative to estimate fAPARg. Our objectives were (a) to test the ability of indices derived from Sentinel‐2 and GreenSeeker NDVI to capture fAPARg of wheat (Triticum aestivum L.) crops, (b) to compare these sensors’ performance against the moderate resolution imaging spectroradiometer (MODIS), and (c) to compare our Sentinel‐2 model estimations with the available algorithm. In wheat fields in the southwest Argentinean Pampas, on several sampling dates, we measured fAPARg with a quantum light sensor and NDVI with a GreenSeeker. We regressed fAPARg measurements with vegetation indices from the different sources and selected the best models. Sentinel‐2 and GreenSeeker NDVI precisely estimated fAPARg, with a performance similar to MODIS (p &lt; .05; RMSD = 0.09, 0.11, and 0.08; R2 = .89, .88, and .95, respectively). The available algorithm to estimate fAPARg with Sentinel‐2 yielded biased estimations, mainly in the lower range of fAPARg. These results suggest that simple models may provide fAPARg estimations with Sentinel‐2 and GreenSeeker in wheat crops with an accuracy suitable for agricultural applications.</description><issn>0011-183X</issn><issn>1435-0653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KxDAUhYMoOI5ufIKshY75aZN0KcU_GHBRBXclbW-mkUxaksAwOx_BZ_RJ7DiuXZ3Ndy73fAhdU7KihLDbLnZsxQhl5Qla0JwXGREFP0ULQijNqOLv5-gixg9CiCxlsUC-ttvJAQ6wCRCjHT3ejj24iNOIISa71Qmws5shYesThA6mdKCsx7sBdMJdGKeIdzYNuAafrAf3_fnFsPY91niYYwDX4wg-juESnRntIlz95RK9Pdy_Vk_Z-uXxubpbZx2TvMwENbkwsmBlqaBkQHqat5ITnkvWGsm4ANoKpY1Roi1VKxUTihY0VzkXWgq-RDfHu_N3MQYwzRTmKWHfUNIcTDUHU82vqRmmR3hnHez_IZuqrtix8wMN9Gw-</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Pellegrini, Pedro</creator><creator>Cossani, C. Mariano</creator><creator>Bella, Carlos M. Di</creator><creator>Piñeiro, Gervasio</creator><creator>Sadras, Víctor O.</creator><creator>Oesterheld, Martín</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3224-4582</orcidid></search><sort><creationdate>202005</creationdate><title>Simple regression models to estimate light interception in wheat crops with Sentinel‐2 and a handheld sensor</title><author>Pellegrini, Pedro ; Cossani, C. Mariano ; Bella, Carlos M. Di ; Piñeiro, Gervasio ; Sadras, Víctor O. ; Oesterheld, Martín</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2739-61f46f752998e92e0d14b7303472bf7236e1b68aff86b98b7826815148436a763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pellegrini, Pedro</creatorcontrib><creatorcontrib>Cossani, C. Mariano</creatorcontrib><creatorcontrib>Bella, Carlos M. Di</creatorcontrib><creatorcontrib>Piñeiro, Gervasio</creatorcontrib><creatorcontrib>Sadras, Víctor O.</creatorcontrib><creatorcontrib>Oesterheld, Martín</creatorcontrib><collection>CrossRef</collection><jtitle>Crop science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pellegrini, Pedro</au><au>Cossani, C. Mariano</au><au>Bella, Carlos M. Di</au><au>Piñeiro, Gervasio</au><au>Sadras, Víctor O.</au><au>Oesterheld, Martín</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple regression models to estimate light interception in wheat crops with Sentinel‐2 and a handheld sensor</atitle><jtitle>Crop science</jtitle><date>2020-05</date><risdate>2020</risdate><volume>60</volume><issue>3</issue><spage>1607</spage><epage>1616</epage><pages>1607-1616</pages><issn>0011-183X</issn><eissn>1435-0653</eissn><abstract>Capture of radiation by crop canopies drives growth rate, grain set, and yield. Since the fraction of photosynthetically active radiation absorbed by green area (fAPARg) correlates with normalized difference vegetation index (NDVI), remote sensors have been used to monitor vegetation. With a 10‐m spatial resolution and 5‐d revisiting time, the recently launched Sentinel‐2 satellite is a promising tool for fAPARg monitoring. However, the available algorithm to estimate fAPARg is based on simulations of canopy interception of several vegetation types and was never tested in field crops. Handheld sensors, such as GreenSeeker, are another alternative to estimate fAPARg. Our objectives were (a) to test the ability of indices derived from Sentinel‐2 and GreenSeeker NDVI to capture fAPARg of wheat (Triticum aestivum L.) crops, (b) to compare these sensors’ performance against the moderate resolution imaging spectroradiometer (MODIS), and (c) to compare our Sentinel‐2 model estimations with the available algorithm. In wheat fields in the southwest Argentinean Pampas, on several sampling dates, we measured fAPARg with a quantum light sensor and NDVI with a GreenSeeker. We regressed fAPARg measurements with vegetation indices from the different sources and selected the best models. Sentinel‐2 and GreenSeeker NDVI precisely estimated fAPARg, with a performance similar to MODIS (p &lt; .05; RMSD = 0.09, 0.11, and 0.08; R2 = .89, .88, and .95, respectively). The available algorithm to estimate fAPARg with Sentinel‐2 yielded biased estimations, mainly in the lower range of fAPARg. These results suggest that simple models may provide fAPARg estimations with Sentinel‐2 and GreenSeeker in wheat crops with an accuracy suitable for agricultural applications.</abstract><doi>10.1002/csc2.20129</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3224-4582</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0011-183X
ispartof Crop science, 2020-05, Vol.60 (3), p.1607-1616
issn 0011-183X
1435-0653
language eng
recordid cdi_crossref_primary_10_1002_csc2_20129
source Wiley Journals; Alma/SFX Local Collection
title Simple regression models to estimate light interception in wheat crops with Sentinel‐2 and a handheld sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A45%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20regression%20models%20to%20estimate%20light%20interception%20in%20wheat%20crops%20with%20Sentinel%E2%80%902%20and%20a%20handheld%20sensor&rft.jtitle=Crop%20science&rft.au=Pellegrini,%20Pedro&rft.date=2020-05&rft.volume=60&rft.issue=3&rft.spage=1607&rft.epage=1616&rft.pages=1607-1616&rft.issn=0011-183X&rft.eissn=1435-0653&rft_id=info:doi/10.1002/csc2.20129&rft_dat=%3Cwiley_cross%3ECSC220129%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true