Optimizing Structural, Microhardness, Surface Growth Mechanism, Luminescence and Thermal Traits of KH 2 PO 4 Crystal Exploiting Multidirectional H‐Bonding Quality of Dopant Tartaric Acid

High‐end nonlinear optical devices demand superior quality KH 2 PO 4 crystal and to meet this necessity slow solvent evaporation technique is employed to grow optical quality potassium dihydrogen orthophosphate (KH 2 PO 4 , KDOP) crystal by doping tartaric acid (TA) and special attention is devoted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystal research and technology (1979) 2018-04, Vol.53 (4)
Hauptverfasser: Anis, Mohd, Baig, Mirza Irshad, Pandian, Muthu Senthil, Ramasamy, P., AlFaify, Salem, Ganesh, Venga, Muley, Gajanan G., Ghramh, Hamed Ali
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Crystal research and technology (1979)
container_volume 53
creator Anis, Mohd
Baig, Mirza Irshad
Pandian, Muthu Senthil
Ramasamy, P.
AlFaify, Salem
Ganesh, Venga
Muley, Gajanan G.
Ghramh, Hamed Ali
description High‐end nonlinear optical devices demand superior quality KH 2 PO 4 crystal and to meet this necessity slow solvent evaporation technique is employed to grow optical quality potassium dihydrogen orthophosphate (KH 2 PO 4 , KDOP) crystal by doping tartaric acid (TA) and special attention is devoted to optimize the defect influenced properties of KDOP crystal. The incorporation of TA in KDOP crystal matrix is evaluated by employing energy dispersive spectroscopic technique. The crystalline phase and structural dimensions of pure and TA doped KDOP crystal is evaluated by means of powder X‐ray diffraction analysis. The luminescence behavior of TA doped KDOP crystal is examined in visible region and violet colored emission is evidenced at 408 nm. The Vickers microhardness studies are carried out to uncover the constructive influence of TA on hardness and elastic stiffness coefficient of KDOP crystal. Impressive role of TA in minimizing defect density and improving the surface growth mechanism of KDOP crystal is explored by chemical etching analysis. The thermogravimetric analysis curve is traced within 30–650 °C and TA doped KDOP crystal is found thermally stale up to 233 °C. The results are appraised to propose the suitability of TA doped KDOP crystal for distinct applications.
doi_str_mv 10.1002/crat.201700165
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_crat_201700165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_crat_201700165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c845-9afed8e5d605137a3d9ebbf10c482f6e685fc6792ff31af2e1f5371b57cf13c93</originalsourceid><addsrcrecordid>eNo9kEtOwzAYhC0EEqWwZe0DNMWPPJelQItoVVCzj_46NjFKnMp2BGXFETgQp-EkJAKxmsU3mpE-hC4pmVJC2JWw4KeM0IQQGkdHaEQjRoOQJNkxGhHGWUA5IafozLkXQkgWh2yEvjZ7rxv9rs0z3nrbCd9ZqCd4rYVtK7Clkc5N8LazCoTEC9u--gqvpajAaNdM8KprdN8R0vQYTInzStoGapxb0N7hVuGHJWb4cYNDPLcH53t2-7avW-2H03VXe11qK4XXrenZ8vvj87o15QCfOqi1PwwjN-0ejMc5WA9WCzwTujxHJwpqJy_-cozyu9t8vgxWm8X9fLYKRBpGQQZKlqmMyphElCfAy0zudooSEaZMxTJOIyXiJGNKcQqKSaointBdlAhFucj4GE1_Z3slzlmpir3VDdhDQUkxqC8G9cW_ev4D7_N8NQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimizing Structural, Microhardness, Surface Growth Mechanism, Luminescence and Thermal Traits of KH 2 PO 4 Crystal Exploiting Multidirectional H‐Bonding Quality of Dopant Tartaric Acid</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Anis, Mohd ; Baig, Mirza Irshad ; Pandian, Muthu Senthil ; Ramasamy, P. ; AlFaify, Salem ; Ganesh, Venga ; Muley, Gajanan G. ; Ghramh, Hamed Ali</creator><creatorcontrib>Anis, Mohd ; Baig, Mirza Irshad ; Pandian, Muthu Senthil ; Ramasamy, P. ; AlFaify, Salem ; Ganesh, Venga ; Muley, Gajanan G. ; Ghramh, Hamed Ali</creatorcontrib><description>High‐end nonlinear optical devices demand superior quality KH 2 PO 4 crystal and to meet this necessity slow solvent evaporation technique is employed to grow optical quality potassium dihydrogen orthophosphate (KH 2 PO 4 , KDOP) crystal by doping tartaric acid (TA) and special attention is devoted to optimize the defect influenced properties of KDOP crystal. The incorporation of TA in KDOP crystal matrix is evaluated by employing energy dispersive spectroscopic technique. The crystalline phase and structural dimensions of pure and TA doped KDOP crystal is evaluated by means of powder X‐ray diffraction analysis. The luminescence behavior of TA doped KDOP crystal is examined in visible region and violet colored emission is evidenced at 408 nm. The Vickers microhardness studies are carried out to uncover the constructive influence of TA on hardness and elastic stiffness coefficient of KDOP crystal. Impressive role of TA in minimizing defect density and improving the surface growth mechanism of KDOP crystal is explored by chemical etching analysis. The thermogravimetric analysis curve is traced within 30–650 °C and TA doped KDOP crystal is found thermally stale up to 233 °C. The results are appraised to propose the suitability of TA doped KDOP crystal for distinct applications.</description><identifier>ISSN: 0232-1300</identifier><identifier>EISSN: 1521-4079</identifier><identifier>DOI: 10.1002/crat.201700165</identifier><language>eng</language><ispartof>Crystal research and technology (1979), 2018-04, Vol.53 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c845-9afed8e5d605137a3d9ebbf10c482f6e685fc6792ff31af2e1f5371b57cf13c93</citedby><cites>FETCH-LOGICAL-c845-9afed8e5d605137a3d9ebbf10c482f6e685fc6792ff31af2e1f5371b57cf13c93</cites><orcidid>0000-0003-2106-9093</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Anis, Mohd</creatorcontrib><creatorcontrib>Baig, Mirza Irshad</creatorcontrib><creatorcontrib>Pandian, Muthu Senthil</creatorcontrib><creatorcontrib>Ramasamy, P.</creatorcontrib><creatorcontrib>AlFaify, Salem</creatorcontrib><creatorcontrib>Ganesh, Venga</creatorcontrib><creatorcontrib>Muley, Gajanan G.</creatorcontrib><creatorcontrib>Ghramh, Hamed Ali</creatorcontrib><title>Optimizing Structural, Microhardness, Surface Growth Mechanism, Luminescence and Thermal Traits of KH 2 PO 4 Crystal Exploiting Multidirectional H‐Bonding Quality of Dopant Tartaric Acid</title><title>Crystal research and technology (1979)</title><description>High‐end nonlinear optical devices demand superior quality KH 2 PO 4 crystal and to meet this necessity slow solvent evaporation technique is employed to grow optical quality potassium dihydrogen orthophosphate (KH 2 PO 4 , KDOP) crystal by doping tartaric acid (TA) and special attention is devoted to optimize the defect influenced properties of KDOP crystal. The incorporation of TA in KDOP crystal matrix is evaluated by employing energy dispersive spectroscopic technique. The crystalline phase and structural dimensions of pure and TA doped KDOP crystal is evaluated by means of powder X‐ray diffraction analysis. The luminescence behavior of TA doped KDOP crystal is examined in visible region and violet colored emission is evidenced at 408 nm. The Vickers microhardness studies are carried out to uncover the constructive influence of TA on hardness and elastic stiffness coefficient of KDOP crystal. Impressive role of TA in minimizing defect density and improving the surface growth mechanism of KDOP crystal is explored by chemical etching analysis. The thermogravimetric analysis curve is traced within 30–650 °C and TA doped KDOP crystal is found thermally stale up to 233 °C. The results are appraised to propose the suitability of TA doped KDOP crystal for distinct applications.</description><issn>0232-1300</issn><issn>1521-4079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kEtOwzAYhC0EEqWwZe0DNMWPPJelQItoVVCzj_46NjFKnMp2BGXFETgQp-EkJAKxmsU3mpE-hC4pmVJC2JWw4KeM0IQQGkdHaEQjRoOQJNkxGhHGWUA5IafozLkXQkgWh2yEvjZ7rxv9rs0z3nrbCd9ZqCd4rYVtK7Clkc5N8LazCoTEC9u--gqvpajAaNdM8KprdN8R0vQYTInzStoGapxb0N7hVuGHJWb4cYNDPLcH53t2-7avW-2H03VXe11qK4XXrenZ8vvj87o15QCfOqi1PwwjN-0ejMc5WA9WCzwTujxHJwpqJy_-cozyu9t8vgxWm8X9fLYKRBpGQQZKlqmMyphElCfAy0zudooSEaZMxTJOIyXiJGNKcQqKSaointBdlAhFucj4GE1_Z3slzlmpir3VDdhDQUkxqC8G9cW_ev4D7_N8NQ</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Anis, Mohd</creator><creator>Baig, Mirza Irshad</creator><creator>Pandian, Muthu Senthil</creator><creator>Ramasamy, P.</creator><creator>AlFaify, Salem</creator><creator>Ganesh, Venga</creator><creator>Muley, Gajanan G.</creator><creator>Ghramh, Hamed Ali</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2106-9093</orcidid></search><sort><creationdate>201804</creationdate><title>Optimizing Structural, Microhardness, Surface Growth Mechanism, Luminescence and Thermal Traits of KH 2 PO 4 Crystal Exploiting Multidirectional H‐Bonding Quality of Dopant Tartaric Acid</title><author>Anis, Mohd ; Baig, Mirza Irshad ; Pandian, Muthu Senthil ; Ramasamy, P. ; AlFaify, Salem ; Ganesh, Venga ; Muley, Gajanan G. ; Ghramh, Hamed Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c845-9afed8e5d605137a3d9ebbf10c482f6e685fc6792ff31af2e1f5371b57cf13c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anis, Mohd</creatorcontrib><creatorcontrib>Baig, Mirza Irshad</creatorcontrib><creatorcontrib>Pandian, Muthu Senthil</creatorcontrib><creatorcontrib>Ramasamy, P.</creatorcontrib><creatorcontrib>AlFaify, Salem</creatorcontrib><creatorcontrib>Ganesh, Venga</creatorcontrib><creatorcontrib>Muley, Gajanan G.</creatorcontrib><creatorcontrib>Ghramh, Hamed Ali</creatorcontrib><collection>CrossRef</collection><jtitle>Crystal research and technology (1979)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anis, Mohd</au><au>Baig, Mirza Irshad</au><au>Pandian, Muthu Senthil</au><au>Ramasamy, P.</au><au>AlFaify, Salem</au><au>Ganesh, Venga</au><au>Muley, Gajanan G.</au><au>Ghramh, Hamed Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Structural, Microhardness, Surface Growth Mechanism, Luminescence and Thermal Traits of KH 2 PO 4 Crystal Exploiting Multidirectional H‐Bonding Quality of Dopant Tartaric Acid</atitle><jtitle>Crystal research and technology (1979)</jtitle><date>2018-04</date><risdate>2018</risdate><volume>53</volume><issue>4</issue><issn>0232-1300</issn><eissn>1521-4079</eissn><abstract>High‐end nonlinear optical devices demand superior quality KH 2 PO 4 crystal and to meet this necessity slow solvent evaporation technique is employed to grow optical quality potassium dihydrogen orthophosphate (KH 2 PO 4 , KDOP) crystal by doping tartaric acid (TA) and special attention is devoted to optimize the defect influenced properties of KDOP crystal. The incorporation of TA in KDOP crystal matrix is evaluated by employing energy dispersive spectroscopic technique. The crystalline phase and structural dimensions of pure and TA doped KDOP crystal is evaluated by means of powder X‐ray diffraction analysis. The luminescence behavior of TA doped KDOP crystal is examined in visible region and violet colored emission is evidenced at 408 nm. The Vickers microhardness studies are carried out to uncover the constructive influence of TA on hardness and elastic stiffness coefficient of KDOP crystal. Impressive role of TA in minimizing defect density and improving the surface growth mechanism of KDOP crystal is explored by chemical etching analysis. The thermogravimetric analysis curve is traced within 30–650 °C and TA doped KDOP crystal is found thermally stale up to 233 °C. The results are appraised to propose the suitability of TA doped KDOP crystal for distinct applications.</abstract><doi>10.1002/crat.201700165</doi><orcidid>https://orcid.org/0000-0003-2106-9093</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0232-1300
ispartof Crystal research and technology (1979), 2018-04, Vol.53 (4)
issn 0232-1300
1521-4079
language eng
recordid cdi_crossref_primary_10_1002_crat_201700165
source Wiley Online Library Journals Frontfile Complete
title Optimizing Structural, Microhardness, Surface Growth Mechanism, Luminescence and Thermal Traits of KH 2 PO 4 Crystal Exploiting Multidirectional H‐Bonding Quality of Dopant Tartaric Acid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A54%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Structural,%20Microhardness,%20Surface%20Growth%20Mechanism,%20Luminescence%20and%20Thermal%20Traits%20of%20KH%202%20PO%204%20Crystal%20Exploiting%20Multidirectional%20H%E2%80%90Bonding%20Quality%20of%20Dopant%20Tartaric%20Acid&rft.jtitle=Crystal%20research%20and%20technology%20(1979)&rft.au=Anis,%20Mohd&rft.date=2018-04&rft.volume=53&rft.issue=4&rft.issn=0232-1300&rft.eissn=1521-4079&rft_id=info:doi/10.1002/crat.201700165&rft_dat=%3Ccrossref%3E10_1002_crat_201700165%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true