CO 2 Hydrogenation to CH 3 OH on Metal-Doped TiO 2 (110): Mechanisms, Strain Effect and a New Thermodynamic-Kinetic Relation

Surface strain and linear thermodynamic-kinetic relation are interesting topics in catalysis. Development of low temperature methanol catalysts of high activity and selectivity is of particularly importance for conversion of CO to methanol. In the present paper CO hydrogenation to methanol on Znx@Ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2024-06, Vol.25 (12), p.e202300608
Hauptverfasser: Lu, Huili, Yang, Deshuai, Chen, Zhao-Xu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page e202300608
container_title Chemphyschem
container_volume 25
creator Lu, Huili
Yang, Deshuai
Chen, Zhao-Xu
description Surface strain and linear thermodynamic-kinetic relation are interesting topics in catalysis. Development of low temperature methanol catalysts of high activity and selectivity is of particularly importance for conversion of CO to methanol. In the present paper CO hydrogenation to methanol on Znx@TiO (110) (x=0-2) was explored using density functional calculations and microkinetic simulations. The reaction mechanisms on the three model systems were determined and it is shown that Zn2@TiO (110) is the most active. The most favorable pathway on Zn2@TiO (110) is identified and CO +H to HCOO is found to be the rate-controlling step. It is demonstrated that there is a linear relation (named AEB relation) between the adsorption energies of the initial states and the barriers for the controlling step on the 18 systems studied. Calculations on strained surfaces show that the AEB relation exists within ±1 % strain. Sr2@TiO (110) and -1 % strained CaZn and ZnCu doped TiO (110) are potential good low temperature catalysts and deserve experimental testing.
doi_str_mv 10.1002/cphc.202300608
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cphc_202300608</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38523075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c625-cb334a63ec9c8945fdc8d2dcee51c366c6bd74ac62e99a0146ad6406e8ac6cc33</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRbK1ePcoeFUydzW42iTeJ1YjVguYetrMTu9IkJYlIwT_e1Nae5uu9N_Bj7FzAWAD4N7ha4NgHXwJoiA7YUCgZe6FW4nDXK18GA3bStp8AEEEojtlARkHvCIMh-0lm3Ofp2jb1B1Wmc3XFu5onKZd8lvJ-eqHOLL37ekWWZ26jvhQCrm77Ay5M5dqyvebvXWNcxSdFQdhxU1lu-Ct982xBTVnbdWVKh96zq6hzyN9o-ffplB0VZtnS2a6OWPYwyZLUm84en5K7qYfaDzycS6mMloQxRrEKCouR9S0SBQKl1qjnNlSm11IcGxBKG6sVaIr6HaKUIzbexmJTt21DRb5qXGmadS4g31DMNxTzPcXecLE1rL7mJdm9_B-b_AXTlGvY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CO 2 Hydrogenation to CH 3 OH on Metal-Doped TiO 2 (110): Mechanisms, Strain Effect and a New Thermodynamic-Kinetic Relation</title><source>Access via Wiley Online Library</source><creator>Lu, Huili ; Yang, Deshuai ; Chen, Zhao-Xu</creator><creatorcontrib>Lu, Huili ; Yang, Deshuai ; Chen, Zhao-Xu</creatorcontrib><description>Surface strain and linear thermodynamic-kinetic relation are interesting topics in catalysis. Development of low temperature methanol catalysts of high activity and selectivity is of particularly importance for conversion of CO to methanol. In the present paper CO hydrogenation to methanol on Znx@TiO (110) (x=0-2) was explored using density functional calculations and microkinetic simulations. The reaction mechanisms on the three model systems were determined and it is shown that Zn2@TiO (110) is the most active. The most favorable pathway on Zn2@TiO (110) is identified and CO +H to HCOO is found to be the rate-controlling step. It is demonstrated that there is a linear relation (named AEB relation) between the adsorption energies of the initial states and the barriers for the controlling step on the 18 systems studied. Calculations on strained surfaces show that the AEB relation exists within ±1 % strain. Sr2@TiO (110) and -1 % strained CaZn and ZnCu doped TiO (110) are potential good low temperature catalysts and deserve experimental testing.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.202300608</identifier><identifier>PMID: 38523075</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Chemphyschem, 2024-06, Vol.25 (12), p.e202300608</ispartof><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c625-cb334a63ec9c8945fdc8d2dcee51c366c6bd74ac62e99a0146ad6406e8ac6cc33</cites><orcidid>0000-0002-5444-776X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38523075$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Huili</creatorcontrib><creatorcontrib>Yang, Deshuai</creatorcontrib><creatorcontrib>Chen, Zhao-Xu</creatorcontrib><title>CO 2 Hydrogenation to CH 3 OH on Metal-Doped TiO 2 (110): Mechanisms, Strain Effect and a New Thermodynamic-Kinetic Relation</title><title>Chemphyschem</title><addtitle>Chemphyschem</addtitle><description>Surface strain and linear thermodynamic-kinetic relation are interesting topics in catalysis. Development of low temperature methanol catalysts of high activity and selectivity is of particularly importance for conversion of CO to methanol. In the present paper CO hydrogenation to methanol on Znx@TiO (110) (x=0-2) was explored using density functional calculations and microkinetic simulations. The reaction mechanisms on the three model systems were determined and it is shown that Zn2@TiO (110) is the most active. The most favorable pathway on Zn2@TiO (110) is identified and CO +H to HCOO is found to be the rate-controlling step. It is demonstrated that there is a linear relation (named AEB relation) between the adsorption energies of the initial states and the barriers for the controlling step on the 18 systems studied. Calculations on strained surfaces show that the AEB relation exists within ±1 % strain. Sr2@TiO (110) and -1 % strained CaZn and ZnCu doped TiO (110) are potential good low temperature catalysts and deserve experimental testing.</description><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Lw0AQxRdRbK1ePcoeFUydzW42iTeJ1YjVguYetrMTu9IkJYlIwT_e1Nae5uu9N_Bj7FzAWAD4N7ha4NgHXwJoiA7YUCgZe6FW4nDXK18GA3bStp8AEEEojtlARkHvCIMh-0lm3Ofp2jb1B1Wmc3XFu5onKZd8lvJ-eqHOLL37ekWWZ26jvhQCrm77Ay5M5dqyvebvXWNcxSdFQdhxU1lu-Ct982xBTVnbdWVKh96zq6hzyN9o-ffplB0VZtnS2a6OWPYwyZLUm84en5K7qYfaDzycS6mMloQxRrEKCouR9S0SBQKl1qjnNlSm11IcGxBKG6sVaIr6HaKUIzbexmJTt21DRb5qXGmadS4g31DMNxTzPcXecLE1rL7mJdm9_B-b_AXTlGvY</recordid><startdate>20240617</startdate><enddate>20240617</enddate><creator>Lu, Huili</creator><creator>Yang, Deshuai</creator><creator>Chen, Zhao-Xu</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5444-776X</orcidid></search><sort><creationdate>20240617</creationdate><title>CO 2 Hydrogenation to CH 3 OH on Metal-Doped TiO 2 (110): Mechanisms, Strain Effect and a New Thermodynamic-Kinetic Relation</title><author>Lu, Huili ; Yang, Deshuai ; Chen, Zhao-Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c625-cb334a63ec9c8945fdc8d2dcee51c366c6bd74ac62e99a0146ad6406e8ac6cc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Huili</creatorcontrib><creatorcontrib>Yang, Deshuai</creatorcontrib><creatorcontrib>Chen, Zhao-Xu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Huili</au><au>Yang, Deshuai</au><au>Chen, Zhao-Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO 2 Hydrogenation to CH 3 OH on Metal-Doped TiO 2 (110): Mechanisms, Strain Effect and a New Thermodynamic-Kinetic Relation</atitle><jtitle>Chemphyschem</jtitle><addtitle>Chemphyschem</addtitle><date>2024-06-17</date><risdate>2024</risdate><volume>25</volume><issue>12</issue><spage>e202300608</spage><pages>e202300608-</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Surface strain and linear thermodynamic-kinetic relation are interesting topics in catalysis. Development of low temperature methanol catalysts of high activity and selectivity is of particularly importance for conversion of CO to methanol. In the present paper CO hydrogenation to methanol on Znx@TiO (110) (x=0-2) was explored using density functional calculations and microkinetic simulations. The reaction mechanisms on the three model systems were determined and it is shown that Zn2@TiO (110) is the most active. The most favorable pathway on Zn2@TiO (110) is identified and CO +H to HCOO is found to be the rate-controlling step. It is demonstrated that there is a linear relation (named AEB relation) between the adsorption energies of the initial states and the barriers for the controlling step on the 18 systems studied. Calculations on strained surfaces show that the AEB relation exists within ±1 % strain. Sr2@TiO (110) and -1 % strained CaZn and ZnCu doped TiO (110) are potential good low temperature catalysts and deserve experimental testing.</abstract><cop>Germany</cop><pmid>38523075</pmid><doi>10.1002/cphc.202300608</doi><orcidid>https://orcid.org/0000-0002-5444-776X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2024-06, Vol.25 (12), p.e202300608
issn 1439-4235
1439-7641
language eng
recordid cdi_crossref_primary_10_1002_cphc_202300608
source Access via Wiley Online Library
title CO 2 Hydrogenation to CH 3 OH on Metal-Doped TiO 2 (110): Mechanisms, Strain Effect and a New Thermodynamic-Kinetic Relation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A19%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO%202%20Hydrogenation%20to%20CH%203%20OH%20on%20Metal-Doped%20TiO%202%20(110):%20Mechanisms,%20Strain%20Effect%20and%20a%20New%20Thermodynamic-Kinetic%20Relation&rft.jtitle=Chemphyschem&rft.au=Lu,%20Huili&rft.date=2024-06-17&rft.volume=25&rft.issue=12&rft.spage=e202300608&rft.pages=e202300608-&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.202300608&rft_dat=%3Cpubmed_cross%3E38523075%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38523075&rfr_iscdi=true