1.7 nm Platinum Nanoparticles: Synthesis with Glucose Starch, Characterization and Catalysis
Monodisperse platinum nanoparticles (PtNPs) were synthesized by a green recipe. Glucose serves as a reducing agent and starch as a stabilization agent to protect the freshly formed PtNP cores in buffered aqueous solutions. Among the ten buffers studied, 2‐(N‐morpholino)ethanesulfonic acid (MES), amm...
Gespeichert in:
Veröffentlicht in: | Chemphyschem 2010-09, Vol.11 (13), p.2844-2853 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2853 |
---|---|
container_issue | 13 |
container_start_page | 2844 |
container_title | Chemphyschem |
container_volume | 11 |
creator | Engelbrekt, Christian Sørensen, Karsten Holm Lübcke, Teis Zhang, Jingdong Li, Qingfeng Pan, Chao Bjerrum, Niels J. Ulstrup, Jens |
description | Monodisperse platinum nanoparticles (PtNPs) were synthesized by a green recipe. Glucose serves as a reducing agent and starch as a stabilization agent to protect the freshly formed PtNP cores in buffered aqueous solutions. Among the ten buffers studied, 2‐(N‐morpholino)ethanesulfonic acid (MES), ammonium acetate and phosphate are the best media for PtNP size control and fast chemical preparation. The uniform sizes of the metal cores were determined by transmission electron microscopy (TEM) and found to be 1.8±0.5, 1.7±0.2 and 1.6±0.5 nm in phosphate, MES and ammonium acetate buffer, respectively. The estimated total diameter of the core with a starch coating layer is 5.8–6.0 nm, based on thermogravimetric analysis (TGA). The synthesis reaction is simple, environmentally friendly, highly reproducible, and easy to scale up. The PtNPs were characterized electrochemically and show high catalytic activity for reduction of dioxygen and hydrogen peroxide as well as for oxidation of dihydrogen. The PtNPs can be transferred to carbon support materials with little demand for high specific surface area of carbon. This enables utilization of graphitized carbon blacks to prepare well‐dispersed Pt/C catalysts, which exhibit significantly improved durability in the accelerated aging test under fuel cell mimicking conditions.
Nanosweets: The synthesis of monodisperse platinum nanoparticles (PtNPs) by a green recipe is described (see picture). Glucose serves as a reducing agent and starch as a stabilization agent to protect the freshly formed PtNP cores in buffered aqueous solutions. The PtNPs show high catalytic activity for the reduction of dioxygen and hydrogen peroxide as well as for the oxidation of dihydrogen. |
doi_str_mv | 10.1002/cphc.201000380 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cphc_201000380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_NBF1DVB8_M</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3800-e016878b247bc5af377093a250920673e9194fa15806db6f9c5d1681ac24b2313</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0EolBYGZEXNlL8SOKEjQZokUpB4rUgWTeuoxjSpLJTQfn1uGopbEz3Dufcx4fQESU9Sgg7U7NS9RjxPeEJ2UJ7NORpIOKQbq_7kPGog_ade_NMQgTdRR3mS8REtIdeaU_georvK2hNPZ_iMdTNDGxrVKXdOX5Y1G2pnXH4w7QlHlRz1TiNH1qwqjzFWQkWVKut-fJ-U2OoJziDFqqFdw7QTgGV04fr2kVP11eP2TAY3Q1usotRoPzNJNCExolIchaKXEVQcCFIyoFFJGUkFlynNA0LoFFC4kkeF6mKJt6goFiYM055F_VWc5VtnLO6kDNrpmAXkhK5jEkuY5KbmLxwvBJm83yqJxv8JxcPnKwBcAqqwkKtjPvlOONJKJaD0hX3YSq9-GetzO6H2d8jgpVrXKs_Ny7Yd-mfFpF8GQ_kuH9NL5_7ibzl31XzjvY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>1.7 nm Platinum Nanoparticles: Synthesis with Glucose Starch, Characterization and Catalysis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Engelbrekt, Christian ; Sørensen, Karsten Holm ; Lübcke, Teis ; Zhang, Jingdong ; Li, Qingfeng ; Pan, Chao ; Bjerrum, Niels J. ; Ulstrup, Jens</creator><creatorcontrib>Engelbrekt, Christian ; Sørensen, Karsten Holm ; Lübcke, Teis ; Zhang, Jingdong ; Li, Qingfeng ; Pan, Chao ; Bjerrum, Niels J. ; Ulstrup, Jens</creatorcontrib><description>Monodisperse platinum nanoparticles (PtNPs) were synthesized by a green recipe. Glucose serves as a reducing agent and starch as a stabilization agent to protect the freshly formed PtNP cores in buffered aqueous solutions. Among the ten buffers studied, 2‐(N‐morpholino)ethanesulfonic acid (MES), ammonium acetate and phosphate are the best media for PtNP size control and fast chemical preparation. The uniform sizes of the metal cores were determined by transmission electron microscopy (TEM) and found to be 1.8±0.5, 1.7±0.2 and 1.6±0.5 nm in phosphate, MES and ammonium acetate buffer, respectively. The estimated total diameter of the core with a starch coating layer is 5.8–6.0 nm, based on thermogravimetric analysis (TGA). The synthesis reaction is simple, environmentally friendly, highly reproducible, and easy to scale up. The PtNPs were characterized electrochemically and show high catalytic activity for reduction of dioxygen and hydrogen peroxide as well as for oxidation of dihydrogen. The PtNPs can be transferred to carbon support materials with little demand for high specific surface area of carbon. This enables utilization of graphitized carbon blacks to prepare well‐dispersed Pt/C catalysts, which exhibit significantly improved durability in the accelerated aging test under fuel cell mimicking conditions.
Nanosweets: The synthesis of monodisperse platinum nanoparticles (PtNPs) by a green recipe is described (see picture). Glucose serves as a reducing agent and starch as a stabilization agent to protect the freshly formed PtNP cores in buffered aqueous solutions. The PtNPs show high catalytic activity for the reduction of dioxygen and hydrogen peroxide as well as for the oxidation of dihydrogen.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201000380</identifier><identifier>PMID: 20715275</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Alkanesulfonic Acids - chemistry ; Applied sciences ; Catalysis ; Chemistry ; Colloidal state and disperse state ; Electrochemistry ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; General and physical chemistry ; Glucose - chemistry ; heterogeneous catalysis ; Metal Nanoparticles - chemistry ; Morpholines - chemistry ; nanoparticles ; Particle Size ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; platinum ; Platinum - chemistry ; Starch - chemistry ; Surface Properties ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Chemphyschem, 2010-09, Vol.11 (13), p.2844-2853</ispartof><rights>Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3800-e016878b247bc5af377093a250920673e9194fa15806db6f9c5d1681ac24b2313</citedby><cites>FETCH-LOGICAL-c3800-e016878b247bc5af377093a250920673e9194fa15806db6f9c5d1681ac24b2313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcphc.201000380$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcphc.201000380$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23238470$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20715275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Engelbrekt, Christian</creatorcontrib><creatorcontrib>Sørensen, Karsten Holm</creatorcontrib><creatorcontrib>Lübcke, Teis</creatorcontrib><creatorcontrib>Zhang, Jingdong</creatorcontrib><creatorcontrib>Li, Qingfeng</creatorcontrib><creatorcontrib>Pan, Chao</creatorcontrib><creatorcontrib>Bjerrum, Niels J.</creatorcontrib><creatorcontrib>Ulstrup, Jens</creatorcontrib><title>1.7 nm Platinum Nanoparticles: Synthesis with Glucose Starch, Characterization and Catalysis</title><title>Chemphyschem</title><addtitle>ChemPhysChem</addtitle><description>Monodisperse platinum nanoparticles (PtNPs) were synthesized by a green recipe. Glucose serves as a reducing agent and starch as a stabilization agent to protect the freshly formed PtNP cores in buffered aqueous solutions. Among the ten buffers studied, 2‐(N‐morpholino)ethanesulfonic acid (MES), ammonium acetate and phosphate are the best media for PtNP size control and fast chemical preparation. The uniform sizes of the metal cores were determined by transmission electron microscopy (TEM) and found to be 1.8±0.5, 1.7±0.2 and 1.6±0.5 nm in phosphate, MES and ammonium acetate buffer, respectively. The estimated total diameter of the core with a starch coating layer is 5.8–6.0 nm, based on thermogravimetric analysis (TGA). The synthesis reaction is simple, environmentally friendly, highly reproducible, and easy to scale up. The PtNPs were characterized electrochemically and show high catalytic activity for reduction of dioxygen and hydrogen peroxide as well as for oxidation of dihydrogen. The PtNPs can be transferred to carbon support materials with little demand for high specific surface area of carbon. This enables utilization of graphitized carbon blacks to prepare well‐dispersed Pt/C catalysts, which exhibit significantly improved durability in the accelerated aging test under fuel cell mimicking conditions.
Nanosweets: The synthesis of monodisperse platinum nanoparticles (PtNPs) by a green recipe is described (see picture). Glucose serves as a reducing agent and starch as a stabilization agent to protect the freshly formed PtNP cores in buffered aqueous solutions. The PtNPs show high catalytic activity for the reduction of dioxygen and hydrogen peroxide as well as for the oxidation of dihydrogen.</description><subject>Alkanesulfonic Acids - chemistry</subject><subject>Applied sciences</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Electrochemistry</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>General and physical chemistry</subject><subject>Glucose - chemistry</subject><subject>heterogeneous catalysis</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Morpholines - chemistry</subject><subject>nanoparticles</subject><subject>Particle Size</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>platinum</subject><subject>Platinum - chemistry</subject><subject>Starch - chemistry</subject><subject>Surface Properties</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDtPwzAURi0EolBYGZEXNlL8SOKEjQZokUpB4rUgWTeuoxjSpLJTQfn1uGopbEz3Dufcx4fQESU9Sgg7U7NS9RjxPeEJ2UJ7NORpIOKQbq_7kPGog_ade_NMQgTdRR3mS8REtIdeaU_georvK2hNPZ_iMdTNDGxrVKXdOX5Y1G2pnXH4w7QlHlRz1TiNH1qwqjzFWQkWVKut-fJ-U2OoJziDFqqFdw7QTgGV04fr2kVP11eP2TAY3Q1usotRoPzNJNCExolIchaKXEVQcCFIyoFFJGUkFlynNA0LoFFC4kkeF6mKJt6goFiYM055F_VWc5VtnLO6kDNrpmAXkhK5jEkuY5KbmLxwvBJm83yqJxv8JxcPnKwBcAqqwkKtjPvlOONJKJaD0hX3YSq9-GetzO6H2d8jgpVrXKs_Ny7Yd-mfFpF8GQ_kuH9NL5_7ibzl31XzjvY</recordid><startdate>20100910</startdate><enddate>20100910</enddate><creator>Engelbrekt, Christian</creator><creator>Sørensen, Karsten Holm</creator><creator>Lübcke, Teis</creator><creator>Zhang, Jingdong</creator><creator>Li, Qingfeng</creator><creator>Pan, Chao</creator><creator>Bjerrum, Niels J.</creator><creator>Ulstrup, Jens</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100910</creationdate><title>1.7 nm Platinum Nanoparticles: Synthesis with Glucose Starch, Characterization and Catalysis</title><author>Engelbrekt, Christian ; Sørensen, Karsten Holm ; Lübcke, Teis ; Zhang, Jingdong ; Li, Qingfeng ; Pan, Chao ; Bjerrum, Niels J. ; Ulstrup, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3800-e016878b247bc5af377093a250920673e9194fa15806db6f9c5d1681ac24b2313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alkanesulfonic Acids - chemistry</topic><topic>Applied sciences</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Electrochemistry</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>General and physical chemistry</topic><topic>Glucose - chemistry</topic><topic>heterogeneous catalysis</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Morpholines - chemistry</topic><topic>nanoparticles</topic><topic>Particle Size</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>platinum</topic><topic>Platinum - chemistry</topic><topic>Starch - chemistry</topic><topic>Surface Properties</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Engelbrekt, Christian</creatorcontrib><creatorcontrib>Sørensen, Karsten Holm</creatorcontrib><creatorcontrib>Lübcke, Teis</creatorcontrib><creatorcontrib>Zhang, Jingdong</creatorcontrib><creatorcontrib>Li, Qingfeng</creatorcontrib><creatorcontrib>Pan, Chao</creatorcontrib><creatorcontrib>Bjerrum, Niels J.</creatorcontrib><creatorcontrib>Ulstrup, Jens</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Engelbrekt, Christian</au><au>Sørensen, Karsten Holm</au><au>Lübcke, Teis</au><au>Zhang, Jingdong</au><au>Li, Qingfeng</au><au>Pan, Chao</au><au>Bjerrum, Niels J.</au><au>Ulstrup, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>1.7 nm Platinum Nanoparticles: Synthesis with Glucose Starch, Characterization and Catalysis</atitle><jtitle>Chemphyschem</jtitle><addtitle>ChemPhysChem</addtitle><date>2010-09-10</date><risdate>2010</risdate><volume>11</volume><issue>13</issue><spage>2844</spage><epage>2853</epage><pages>2844-2853</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Monodisperse platinum nanoparticles (PtNPs) were synthesized by a green recipe. Glucose serves as a reducing agent and starch as a stabilization agent to protect the freshly formed PtNP cores in buffered aqueous solutions. Among the ten buffers studied, 2‐(N‐morpholino)ethanesulfonic acid (MES), ammonium acetate and phosphate are the best media for PtNP size control and fast chemical preparation. The uniform sizes of the metal cores were determined by transmission electron microscopy (TEM) and found to be 1.8±0.5, 1.7±0.2 and 1.6±0.5 nm in phosphate, MES and ammonium acetate buffer, respectively. The estimated total diameter of the core with a starch coating layer is 5.8–6.0 nm, based on thermogravimetric analysis (TGA). The synthesis reaction is simple, environmentally friendly, highly reproducible, and easy to scale up. The PtNPs were characterized electrochemically and show high catalytic activity for reduction of dioxygen and hydrogen peroxide as well as for oxidation of dihydrogen. The PtNPs can be transferred to carbon support materials with little demand for high specific surface area of carbon. This enables utilization of graphitized carbon blacks to prepare well‐dispersed Pt/C catalysts, which exhibit significantly improved durability in the accelerated aging test under fuel cell mimicking conditions.
Nanosweets: The synthesis of monodisperse platinum nanoparticles (PtNPs) by a green recipe is described (see picture). Glucose serves as a reducing agent and starch as a stabilization agent to protect the freshly formed PtNP cores in buffered aqueous solutions. The PtNPs show high catalytic activity for the reduction of dioxygen and hydrogen peroxide as well as for the oxidation of dihydrogen.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>20715275</pmid><doi>10.1002/cphc.201000380</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4235 |
ispartof | Chemphyschem, 2010-09, Vol.11 (13), p.2844-2853 |
issn | 1439-4235 1439-7641 |
language | eng |
recordid | cdi_crossref_primary_10_1002_cphc_201000380 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Alkanesulfonic Acids - chemistry Applied sciences Catalysis Chemistry Colloidal state and disperse state Electrochemistry Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells General and physical chemistry Glucose - chemistry heterogeneous catalysis Metal Nanoparticles - chemistry Morpholines - chemistry nanoparticles Particle Size Physical and chemical studies. Granulometry. Electrokinetic phenomena platinum Platinum - chemistry Starch - chemistry Surface Properties Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
title | 1.7 nm Platinum Nanoparticles: Synthesis with Glucose Starch, Characterization and Catalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=1.7%20nm%20Platinum%20Nanoparticles:%20Synthesis%20with%20Glucose%20Starch,%20Characterization%20and%20Catalysis&rft.jtitle=Chemphyschem&rft.au=Engelbrekt,%20Christian&rft.date=2010-09-10&rft.volume=11&rft.issue=13&rft.spage=2844&rft.epage=2853&rft.pages=2844-2853&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201000380&rft_dat=%3Cistex_cross%3Eark_67375_WNG_NBF1DVB8_M%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/20715275&rfr_iscdi=true |