1.7 nm Platinum Nanoparticles: Synthesis with Glucose Starch, Characterization and Catalysis

Monodisperse platinum nanoparticles (PtNPs) were synthesized by a green recipe. Glucose serves as a reducing agent and starch as a stabilization agent to protect the freshly formed PtNP cores in buffered aqueous solutions. Among the ten buffers studied, 2‐(N‐morpholino)ethanesulfonic acid (MES), amm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2010-09, Vol.11 (13), p.2844-2853
Hauptverfasser: Engelbrekt, Christian, Sørensen, Karsten Holm, Lübcke, Teis, Zhang, Jingdong, Li, Qingfeng, Pan, Chao, Bjerrum, Niels J., Ulstrup, Jens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2853
container_issue 13
container_start_page 2844
container_title Chemphyschem
container_volume 11
creator Engelbrekt, Christian
Sørensen, Karsten Holm
Lübcke, Teis
Zhang, Jingdong
Li, Qingfeng
Pan, Chao
Bjerrum, Niels J.
Ulstrup, Jens
description Monodisperse platinum nanoparticles (PtNPs) were synthesized by a green recipe. Glucose serves as a reducing agent and starch as a stabilization agent to protect the freshly formed PtNP cores in buffered aqueous solutions. Among the ten buffers studied, 2‐(N‐morpholino)ethanesulfonic acid (MES), ammonium acetate and phosphate are the best media for PtNP size control and fast chemical preparation. The uniform sizes of the metal cores were determined by transmission electron microscopy (TEM) and found to be 1.8±0.5, 1.7±0.2 and 1.6±0.5 nm in phosphate, MES and ammonium acetate buffer, respectively. The estimated total diameter of the core with a starch coating layer is 5.8–6.0 nm, based on thermogravimetric analysis (TGA). The synthesis reaction is simple, environmentally friendly, highly reproducible, and easy to scale up. The PtNPs were characterized electrochemically and show high catalytic activity for reduction of dioxygen and hydrogen peroxide as well as for oxidation of dihydrogen. The PtNPs can be transferred to carbon support materials with little demand for high specific surface area of carbon. This enables utilization of graphitized carbon blacks to prepare well‐dispersed Pt/C catalysts, which exhibit significantly improved durability in the accelerated aging test under fuel cell mimicking conditions. Nanosweets: The synthesis of monodisperse platinum nanoparticles (PtNPs) by a green recipe is described (see picture). Glucose serves as a reducing agent and starch as a stabilization agent to protect the freshly formed PtNP cores in buffered aqueous solutions. The PtNPs show high catalytic activity for the reduction of dioxygen and hydrogen peroxide as well as for the oxidation of dihydrogen.
doi_str_mv 10.1002/cphc.201000380
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cphc_201000380</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_NBF1DVB8_M</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3800-e016878b247bc5af377093a250920673e9194fa15806db6f9c5d1681ac24b2313</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0EolBYGZEXNlL8SOKEjQZokUpB4rUgWTeuoxjSpLJTQfn1uGopbEz3Dufcx4fQESU9Sgg7U7NS9RjxPeEJ2UJ7NORpIOKQbq_7kPGog_ade_NMQgTdRR3mS8REtIdeaU_georvK2hNPZ_iMdTNDGxrVKXdOX5Y1G2pnXH4w7QlHlRz1TiNH1qwqjzFWQkWVKut-fJ-U2OoJziDFqqFdw7QTgGV04fr2kVP11eP2TAY3Q1usotRoPzNJNCExolIchaKXEVQcCFIyoFFJGUkFlynNA0LoFFC4kkeF6mKJt6goFiYM055F_VWc5VtnLO6kDNrpmAXkhK5jEkuY5KbmLxwvBJm83yqJxv8JxcPnKwBcAqqwkKtjPvlOONJKJaD0hX3YSq9-GetzO6H2d8jgpVrXKs_Ny7Yd-mfFpF8GQ_kuH9NL5_7ibzl31XzjvY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>1.7 nm Platinum Nanoparticles: Synthesis with Glucose Starch, Characterization and Catalysis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Engelbrekt, Christian ; Sørensen, Karsten Holm ; Lübcke, Teis ; Zhang, Jingdong ; Li, Qingfeng ; Pan, Chao ; Bjerrum, Niels J. ; Ulstrup, Jens</creator><creatorcontrib>Engelbrekt, Christian ; Sørensen, Karsten Holm ; Lübcke, Teis ; Zhang, Jingdong ; Li, Qingfeng ; Pan, Chao ; Bjerrum, Niels J. ; Ulstrup, Jens</creatorcontrib><description>Monodisperse platinum nanoparticles (PtNPs) were synthesized by a green recipe. Glucose serves as a reducing agent and starch as a stabilization agent to protect the freshly formed PtNP cores in buffered aqueous solutions. Among the ten buffers studied, 2‐(N‐morpholino)ethanesulfonic acid (MES), ammonium acetate and phosphate are the best media for PtNP size control and fast chemical preparation. The uniform sizes of the metal cores were determined by transmission electron microscopy (TEM) and found to be 1.8±0.5, 1.7±0.2 and 1.6±0.5 nm in phosphate, MES and ammonium acetate buffer, respectively. The estimated total diameter of the core with a starch coating layer is 5.8–6.0 nm, based on thermogravimetric analysis (TGA). The synthesis reaction is simple, environmentally friendly, highly reproducible, and easy to scale up. The PtNPs were characterized electrochemically and show high catalytic activity for reduction of dioxygen and hydrogen peroxide as well as for oxidation of dihydrogen. The PtNPs can be transferred to carbon support materials with little demand for high specific surface area of carbon. This enables utilization of graphitized carbon blacks to prepare well‐dispersed Pt/C catalysts, which exhibit significantly improved durability in the accelerated aging test under fuel cell mimicking conditions. Nanosweets: The synthesis of monodisperse platinum nanoparticles (PtNPs) by a green recipe is described (see picture). Glucose serves as a reducing agent and starch as a stabilization agent to protect the freshly formed PtNP cores in buffered aqueous solutions. The PtNPs show high catalytic activity for the reduction of dioxygen and hydrogen peroxide as well as for the oxidation of dihydrogen.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201000380</identifier><identifier>PMID: 20715275</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Alkanesulfonic Acids - chemistry ; Applied sciences ; Catalysis ; Chemistry ; Colloidal state and disperse state ; Electrochemistry ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; General and physical chemistry ; Glucose - chemistry ; heterogeneous catalysis ; Metal Nanoparticles - chemistry ; Morpholines - chemistry ; nanoparticles ; Particle Size ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; platinum ; Platinum - chemistry ; Starch - chemistry ; Surface Properties ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Chemphyschem, 2010-09, Vol.11 (13), p.2844-2853</ispartof><rights>Copyright © 2010 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3800-e016878b247bc5af377093a250920673e9194fa15806db6f9c5d1681ac24b2313</citedby><cites>FETCH-LOGICAL-c3800-e016878b247bc5af377093a250920673e9194fa15806db6f9c5d1681ac24b2313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcphc.201000380$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcphc.201000380$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23238470$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20715275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Engelbrekt, Christian</creatorcontrib><creatorcontrib>Sørensen, Karsten Holm</creatorcontrib><creatorcontrib>Lübcke, Teis</creatorcontrib><creatorcontrib>Zhang, Jingdong</creatorcontrib><creatorcontrib>Li, Qingfeng</creatorcontrib><creatorcontrib>Pan, Chao</creatorcontrib><creatorcontrib>Bjerrum, Niels J.</creatorcontrib><creatorcontrib>Ulstrup, Jens</creatorcontrib><title>1.7 nm Platinum Nanoparticles: Synthesis with Glucose Starch, Characterization and Catalysis</title><title>Chemphyschem</title><addtitle>ChemPhysChem</addtitle><description>Monodisperse platinum nanoparticles (PtNPs) were synthesized by a green recipe. Glucose serves as a reducing agent and starch as a stabilization agent to protect the freshly formed PtNP cores in buffered aqueous solutions. Among the ten buffers studied, 2‐(N‐morpholino)ethanesulfonic acid (MES), ammonium acetate and phosphate are the best media for PtNP size control and fast chemical preparation. The uniform sizes of the metal cores were determined by transmission electron microscopy (TEM) and found to be 1.8±0.5, 1.7±0.2 and 1.6±0.5 nm in phosphate, MES and ammonium acetate buffer, respectively. The estimated total diameter of the core with a starch coating layer is 5.8–6.0 nm, based on thermogravimetric analysis (TGA). The synthesis reaction is simple, environmentally friendly, highly reproducible, and easy to scale up. The PtNPs were characterized electrochemically and show high catalytic activity for reduction of dioxygen and hydrogen peroxide as well as for oxidation of dihydrogen. The PtNPs can be transferred to carbon support materials with little demand for high specific surface area of carbon. This enables utilization of graphitized carbon blacks to prepare well‐dispersed Pt/C catalysts, which exhibit significantly improved durability in the accelerated aging test under fuel cell mimicking conditions. Nanosweets: The synthesis of monodisperse platinum nanoparticles (PtNPs) by a green recipe is described (see picture). Glucose serves as a reducing agent and starch as a stabilization agent to protect the freshly formed PtNP cores in buffered aqueous solutions. The PtNPs show high catalytic activity for the reduction of dioxygen and hydrogen peroxide as well as for the oxidation of dihydrogen.</description><subject>Alkanesulfonic Acids - chemistry</subject><subject>Applied sciences</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Electrochemistry</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>General and physical chemistry</subject><subject>Glucose - chemistry</subject><subject>heterogeneous catalysis</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Morpholines - chemistry</subject><subject>nanoparticles</subject><subject>Particle Size</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>platinum</subject><subject>Platinum - chemistry</subject><subject>Starch - chemistry</subject><subject>Surface Properties</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDtPwzAURi0EolBYGZEXNlL8SOKEjQZokUpB4rUgWTeuoxjSpLJTQfn1uGopbEz3Dufcx4fQESU9Sgg7U7NS9RjxPeEJ2UJ7NORpIOKQbq_7kPGog_ade_NMQgTdRR3mS8REtIdeaU_georvK2hNPZ_iMdTNDGxrVKXdOX5Y1G2pnXH4w7QlHlRz1TiNH1qwqjzFWQkWVKut-fJ-U2OoJziDFqqFdw7QTgGV04fr2kVP11eP2TAY3Q1usotRoPzNJNCExolIchaKXEVQcCFIyoFFJGUkFlynNA0LoFFC4kkeF6mKJt6goFiYM055F_VWc5VtnLO6kDNrpmAXkhK5jEkuY5KbmLxwvBJm83yqJxv8JxcPnKwBcAqqwkKtjPvlOONJKJaD0hX3YSq9-GetzO6H2d8jgpVrXKs_Ny7Yd-mfFpF8GQ_kuH9NL5_7ibzl31XzjvY</recordid><startdate>20100910</startdate><enddate>20100910</enddate><creator>Engelbrekt, Christian</creator><creator>Sørensen, Karsten Holm</creator><creator>Lübcke, Teis</creator><creator>Zhang, Jingdong</creator><creator>Li, Qingfeng</creator><creator>Pan, Chao</creator><creator>Bjerrum, Niels J.</creator><creator>Ulstrup, Jens</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100910</creationdate><title>1.7 nm Platinum Nanoparticles: Synthesis with Glucose Starch, Characterization and Catalysis</title><author>Engelbrekt, Christian ; Sørensen, Karsten Holm ; Lübcke, Teis ; Zhang, Jingdong ; Li, Qingfeng ; Pan, Chao ; Bjerrum, Niels J. ; Ulstrup, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3800-e016878b247bc5af377093a250920673e9194fa15806db6f9c5d1681ac24b2313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alkanesulfonic Acids - chemistry</topic><topic>Applied sciences</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Electrochemistry</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>General and physical chemistry</topic><topic>Glucose - chemistry</topic><topic>heterogeneous catalysis</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Morpholines - chemistry</topic><topic>nanoparticles</topic><topic>Particle Size</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>platinum</topic><topic>Platinum - chemistry</topic><topic>Starch - chemistry</topic><topic>Surface Properties</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Engelbrekt, Christian</creatorcontrib><creatorcontrib>Sørensen, Karsten Holm</creatorcontrib><creatorcontrib>Lübcke, Teis</creatorcontrib><creatorcontrib>Zhang, Jingdong</creatorcontrib><creatorcontrib>Li, Qingfeng</creatorcontrib><creatorcontrib>Pan, Chao</creatorcontrib><creatorcontrib>Bjerrum, Niels J.</creatorcontrib><creatorcontrib>Ulstrup, Jens</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Engelbrekt, Christian</au><au>Sørensen, Karsten Holm</au><au>Lübcke, Teis</au><au>Zhang, Jingdong</au><au>Li, Qingfeng</au><au>Pan, Chao</au><au>Bjerrum, Niels J.</au><au>Ulstrup, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>1.7 nm Platinum Nanoparticles: Synthesis with Glucose Starch, Characterization and Catalysis</atitle><jtitle>Chemphyschem</jtitle><addtitle>ChemPhysChem</addtitle><date>2010-09-10</date><risdate>2010</risdate><volume>11</volume><issue>13</issue><spage>2844</spage><epage>2853</epage><pages>2844-2853</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Monodisperse platinum nanoparticles (PtNPs) were synthesized by a green recipe. Glucose serves as a reducing agent and starch as a stabilization agent to protect the freshly formed PtNP cores in buffered aqueous solutions. Among the ten buffers studied, 2‐(N‐morpholino)ethanesulfonic acid (MES), ammonium acetate and phosphate are the best media for PtNP size control and fast chemical preparation. The uniform sizes of the metal cores were determined by transmission electron microscopy (TEM) and found to be 1.8±0.5, 1.7±0.2 and 1.6±0.5 nm in phosphate, MES and ammonium acetate buffer, respectively. The estimated total diameter of the core with a starch coating layer is 5.8–6.0 nm, based on thermogravimetric analysis (TGA). The synthesis reaction is simple, environmentally friendly, highly reproducible, and easy to scale up. The PtNPs were characterized electrochemically and show high catalytic activity for reduction of dioxygen and hydrogen peroxide as well as for oxidation of dihydrogen. The PtNPs can be transferred to carbon support materials with little demand for high specific surface area of carbon. This enables utilization of graphitized carbon blacks to prepare well‐dispersed Pt/C catalysts, which exhibit significantly improved durability in the accelerated aging test under fuel cell mimicking conditions. Nanosweets: The synthesis of monodisperse platinum nanoparticles (PtNPs) by a green recipe is described (see picture). Glucose serves as a reducing agent and starch as a stabilization agent to protect the freshly formed PtNP cores in buffered aqueous solutions. The PtNPs show high catalytic activity for the reduction of dioxygen and hydrogen peroxide as well as for the oxidation of dihydrogen.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>20715275</pmid><doi>10.1002/cphc.201000380</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2010-09, Vol.11 (13), p.2844-2853
issn 1439-4235
1439-7641
language eng
recordid cdi_crossref_primary_10_1002_cphc_201000380
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Alkanesulfonic Acids - chemistry
Applied sciences
Catalysis
Chemistry
Colloidal state and disperse state
Electrochemistry
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
General and physical chemistry
Glucose - chemistry
heterogeneous catalysis
Metal Nanoparticles - chemistry
Morpholines - chemistry
nanoparticles
Particle Size
Physical and chemical studies. Granulometry. Electrokinetic phenomena
platinum
Platinum - chemistry
Starch - chemistry
Surface Properties
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title 1.7 nm Platinum Nanoparticles: Synthesis with Glucose Starch, Characterization and Catalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=1.7%20nm%20Platinum%20Nanoparticles:%20Synthesis%20with%20Glucose%20Starch,%20Characterization%20and%20Catalysis&rft.jtitle=Chemphyschem&rft.au=Engelbrekt,%20Christian&rft.date=2010-09-10&rft.volume=11&rft.issue=13&rft.spage=2844&rft.epage=2853&rft.pages=2844-2853&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201000380&rft_dat=%3Cistex_cross%3Eark_67375_WNG_NBF1DVB8_M%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/20715275&rfr_iscdi=true